Reflectance Spectroscopy of Clotting Blood: A Description of the Time-Dependent Behavior

2004 ◽  
Vol 128 (2) ◽  
pp. 173-180
Author(s):  
Frank A. Greco

Abstract Context.—Research into whether cyclooxygenase-2 (COX-2) inhibitors affect thrombosis has been hampered by the lack of a specific assay. Erythrocytes modulate the effect of aspirin on platelets, which suggests that tests of whole blood clotting may be more sensitive. Objectives.—To determine whether reflectance spectroscopy of clotting blood generates useful information about coagulation and whether it shows an effect of COX-2 inhibitors. Design.—A survey of 14 adults examined the range of phenomena demonstrated by reflectance spectroscopy. These phenomena were compared before and after treatment with a COX-2 inhibitor in 4 subjects. Setting.—Out-patient clinic. Main Outcome Measure.—Reflected light intensity was measured from blood as it clotted in a cuvette thermostated at 37°C. Results.—The survey of healthy adults showed that the time course of reflected light intensity is similar at all wavelengths and may be divided into 4 stages: a monotonic decrease, a sigmoidal increase, a linear region, and a terminal phase. Clot formation as determined by tube inversion occurs at the transition between the first and second phases; the sigmoidal increase cannot be due to fibrin polymerization. The terminal phase coincides with clot retraction. Similar results are obtained in native whole blood and in recalcified citrated blood. Cyclooxygenase-2 inhibitors have an intrinsic effect on the sigmoidal increase ex vivo (P < .001). Conclusions.—Reflectance spectroscopy generates unique information about clotting blood. It is feasible to use anticoagulated blood to elucidate the events underlying the time course and to investigate the effects of COX-2 inhibitors.

1995 ◽  
Vol 73 (11) ◽  
pp. 1561-1567 ◽  
Author(s):  
L. Charette ◽  
C. Misquitta ◽  
J. Guay ◽  
D. Riendeau ◽  
T. R. Jones

Indomethacin and related nonsteroidal anti-inflammatory drugs relax prostanoid-dependent intrinsic tone of isolated guinea pig trachea by inhibiting cyclooxygenase (COX). Recently, a second isoform of COX (COX-2) was discovered, which differed from COX-1 with respect to protein structure, transcriptional regulation, and susceptibility to inhibition by pharmacological agents. It is now known that indomethacin nonselectively inhibits COX-1 and COX-2, whereas NS-398 is a selective inhibitor of COX-2. In the present study we compared the activity of a selective (NS-398) and nonselective (indomethacin) COX-2 inhibitor on intrinsic tone of isolated guinea pig trachea. NS-398 ≥ indomethacin produced a reversal of intrinsic tone with a similar concentration-dependent (10 nM to 1 μM) time course (Tmax approximately 20–45 min), potency (EC50 1.7 and 5.6 nM, respectively), and maximal response. Contractions to cholinergic nerve stimulation (45 V, 0.5 ms, 0.1–32 Hz) and histamine were similarly modulated in tissues relaxed with the selective or nonselective COX-2 inhibitors. Immunoblot analyses showed that COX-2 protein synthesis was induced in both the cartilage and smooth muscle portions of the trachea during changes in intrinsic tone. These findings are consistent with pharmacological results and provide the first demonstration that prostanoid tone in isolated guinea pig trachea is dependent on COX-2 activity. The results also suggest that the activity of indomethacin in this preparation is likely related to COX-2 inhibition.Key words: cyclooxygenase 2, relaxation, guinea pig trachea, cyclooxygenase 1.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Joyonna Carrie Gamble-George ◽  
Rita Baldi ◽  
Lindsay Halladay ◽  
Adrina Kocharian ◽  
Nolan Hartley ◽  
...  

Mood and anxiety disorders are the most prevalent psychiatric conditions and are exacerbated by stress. Recent studies have suggested cyclooxygenase-2 (COX-2) inhibition could represent a novel treatment approach or augmentation strategy for affective disorders including anxiety disorders and major depression. We show that traditional COX-2 inhibitors and a newly developed substrate-selective COX-2 inhibitor (SSCI) reduce a variety of stress-induced behavioral pathologies in mice. We found that these behavioral effects were associated with a dampening of neuronal excitability in the basolateral amygdala (BLA) ex vivo and in vivo, and were mediated by small-conductance calcium-activated potassium (SK) channel and CB1 cannabinoid receptor activation. Taken together, these data provide further support for the potential utility of SSCIs, as well as traditional COX-2 inhibitors, as novel treatment approaches for stress-related psychiatric disorders.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1103.2-1103
Author(s):  
C. Edenius ◽  
G. Ekström ◽  
J. Kolmert ◽  
R. Morgenstern ◽  
P. Stenberg ◽  
...  

Background:Microsomal prostaglandin E synthase-1 (mPGES-1) catalyzes the formation prostaglandin (PG) E2from cyclooxygenase derived PGH2(1, 2). Inhibition of mPGES-1 leads to reduction of pro-inflammatory PGE2, while in vessels there is a concomitant increase of vasoprotective prostacyclin (PGI2) via shunting of PGH2(3,4). Apart from relieving symptoms in experimental animal models of inflammation, inhibitors of mPGES-1 cause relaxation of human medium sized arteries(4)and resistance arteries(5). The prostaglandin profile following mPGES-1 inhibition, explains the anti-inflammatory effects and also opens for the possibility of treating inflammatory diseases with concomitant vasculopathies. GS-248 is a potent and selective inhibitor of mPGES-1 exhibiting sub-nanomolar IC50in human whole bloodex vivo.Objectives:To evaluate safety, tolerability, pharmacokinetics and pharmacodynamics of GS-248.Methods:Healthy males and females (age 18–73 years) were included in the study. Six cohorts were administrated single oral doses of 1-300mg GS-248 (n=36) or placebo (n=12), three cohorts were administered once daily doses of 20-180mg GS-248 (n=18) or placebo (n=12) over ten days. In addition, 8 subjects were treated in a separate cohort with 200mg celecoxib bid for ten days. Blood samples were drawn for measurement of GS-248 exposure and production of PGE2after LPS incubationex vivo. The content of PGE2and PGI2metabolites was measured in urine. All analyses were performed by LC-MS/MS.Results:GS-248 was safe and well tolerated at all tested dose levels. Maximum plasma concentration was achieved 1 - 2.5 hours after dosing, and half-life was about 10 hours. Induced PGE2formationex vivo,catalyzed by mPGES-1, was completely inhibited for 24 hours after a single low dose (40mg) of GS-248. In urine, GS-248 dose-dependently reduced the excretion of PGE2metabolite by more than 50% whereas the excretion of PGI2metabolite increased more than twice the baseline levels. In the celecoxib cohort urinary metabolites of both PGE2and PGI2were reduced with approx 50%.Conclusion:GS-248 at investigated oral doses was safe and well tolerated. There was a sustained inhibition of LPS induced PGE2formation in whole blood. In urine, there was a metabolite shift showing reduced PGE2and increased PGI2, while celecoxib reduced both PGE2and PGI2metabolites. This suggests that selective inhibition of mPGES-1 results in systemic shunting of PGH2to PGI2formation, leading to anti-inflammatory and vasodilatory effects, while preventing platelet activation. The results warrant further evaluation of GS-248 in inflammatory conditions with vasculopathies such as Digital Ulcers and Raynaud’s Phenomenon in Systemic Sclerosis.References:[1]Korotkova M, Jakobsson PJ. Persisting eicosanoid pathways in rheumatic diseases. Nat Rev Rheumatol. 2014;10:229-41[2]Bergqvist F, Morgenstern R, Jakobsson PJ. A review on mPGES-1 inhibitors: From preclinical studies to clinical applications. Prostaglandins Other Lipid Mediat. 2019;147:106383[3]Kirkby NS, et al. Mechanistic definition of the cardiovascular mPGES-1/COX-2/ADMA axis. Cardiovasc Res. 2020[4]Ozen G, et al. Inhibition of microsomal PGE synthase-1 reduces human vascular tone by increasing PGI2: a safer alternative to COX-2 inhibition. Br J Pharmacol. 2017;174:4087-98[5]Larsson K, et al. Biological characterization of new inhibitors of microsomal PGE synthase-1 in preclinical models of inflammation and vascular tone. Br J Pharmacol. 2019;176:4625-38Disclosure of Interests:Charlotte Edenius Shareholder of: Gesynta Pharma, Consultant of: Gesynta Pharma,, Gunilla Ekström Shareholder of: Gesynta Pharma, Consultant of: Gesynta Pharma,, Johan Kolmert Consultant of: Gesynta Pharma,, Ralf Morgenstern Shareholder of: Gesynta Pharma, Employee of: Gesynta Pharma, Patric Stenberg Shareholder of: Gesynta Pharma, Employee of: Gesynta Pharma, Per-Johan Jakobsson Shareholder of: Gesynta Pharma, Grant/research support from: Gesynta Pharma, AstraZeneca,, Göran Tornling Shareholder of: Gesynta Pharma, Vicore Pharma,, Consultant of: Gesynta Pharma, Vicore Pharma, AnaMar


2002 ◽  
Vol 18 (8) ◽  
pp. 503-511 ◽  
Author(s):  
Stefania Tacconelli ◽  
Marta L. Capone ◽  
Maria G. Sciulli ◽  
Emanuela Ricciotti ◽  
Paola Patrignani

Sign in / Sign up

Export Citation Format

Share Document