scholarly journals Aplicação da Transformada de Hilbert-Huang em dados de velocidade medidos em túnel de vento

2018 ◽  
Vol 40 ◽  
pp. 266
Author(s):  
Luís Gustavo Nogueira Martins ◽  
Giuliano Demarco ◽  
Franciano Scremin Puhales ◽  
Gervásio Annes Degrazia ◽  
Otávio Costa Acevedo

In this study, the Hilbert-Huang transform was applied to experimental measurements performed in a wind tunnel to determine the frequency of occurrence of the spectral maximum. These maximum frequencies are associated with the time scale of the most energetic eddies and represent an important input parameter in the pollutants dispersion models. The values of the maximum frequencies obtained by the Hilbert-Huang marginal spectrum are compared with the vaues obtained by the traditionally used Fourier transform. The results show that the energy distribution calculated by both methods are very similar in the region of occurence of the spectral maximum, and for this reason, the maximum frequency values obtained by each method do not presente significant differences. Under determined hypothesis, the Hilbert-Huang transform provided physically more realistic maximum frequency values that those obtained using the Fourier transform.

2012 ◽  
Vol 182-183 ◽  
pp. 1484-1488 ◽  
Author(s):  
Zhao Yan Xuan ◽  
Miao Ge

The vibration signals of the running machine contain non-stationary components. Usually, these non-stationary components contain abundant information on machine faults. In this paper, the Hilbert–Huang transform (HHT) method for the machine fault diagnosis is proposed. The empirical mode decomposition (EMD) method and Hilbert transform are key parts of the Hilbert–Huang transform method. The EMD will generate a collection of intrinsic mode functions (IMF). By applying EMD method and Hilbert transform to the vibration signal, we can get the Hilbert spectrum from which the faults in a running machine can be diagnosed and fault patterns can be identified. The practical vibration signals measured from roller machine with eccentric and friction faults are analysed by the Hilbert–Huang transform and Fourier transform in this paper. Finally, HHT’s performance in rolling machine fault detection is compared with that of the Fourier transform. The comparison results have shown that the HHT is superior than the Fourier transform in machine fault diagnostics. The different failure characteristic frequencies can be distinguished in the component of different orders of IMF, and the time and frequency of failure characteristic frequency appearance can be clearly reflected in the Hilbert spectrum.


Author(s):  
Vinayak P. Dravid ◽  
M.R. Notis ◽  
C.E. Lyman

The concept of interfacial width is often invoked in many materials science phenomena which relate to the structure and properties of internal interfaces. The numerical value of interface width is an important input parameter in diffusion equations, sintering theories as well as in many electronic devices/processes. Most often, however, this value is guessed rather than determined or even estimated. In this paper we present a method of determining the effective structural and electronic- structural width of interphase interfaces using low- and core loss fine structure effects in EELS spectra.The specimens used in the study were directionally solidified eutectics (DSEs) in the system; NiO-ZrO2(CaO), NiO-Y2O3 and MnO-ZrO2(ss). EELS experiments were carried out using a VG HB-501 FE STEM and a Hitachi HF-2000 FE TEM.


2021 ◽  
Vol 11 (6) ◽  
pp. 2582
Author(s):  
Lucas M. Martinho ◽  
Alan C. Kubrusly ◽  
Nicolás Pérez ◽  
Jean Pierre von der Weid

The focused signal obtained by the time-reversal or the cross-correlation techniques of ultrasonic guided waves in plates changes when the medium is subject to strain, which can be used to monitor the medium strain level. In this paper, the sensitivity to strain of cross-correlated signals is enhanced by a post-processing filtering procedure aiming to preserve only strain-sensitive spectrum components. Two different strategies were adopted, based on the phase of either the Fourier transform or the short-time Fourier transform. Both use prior knowledge of the system impulse response at some strain level. The technique was evaluated in an aluminum plate, effectively providing up to twice higher sensitivity to strain. The sensitivity increase depends on a phase threshold parameter used in the filtering process. Its performance was assessed based on the sensitivity gain, the loss of energy concentration capability, and the value of the foreknown strain. Signals synthesized with the time–frequency representation, through the short-time Fourier transform, provided a better tradeoff between sensitivity gain and loss of energy concentration.


2021 ◽  
Vol 262 ◽  
pp. 117928
Author(s):  
Shusaku Nakajima ◽  
Shuhei Horiuchi ◽  
Akifumi Ikehata ◽  
Yuichi Ogawa

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lung-Hui Chen

Abstract In this paper, we discuss how to partially determine the Fourier transform F ⁢ ( z ) = ∫ - 1 1 f ⁢ ( t ) ⁢ e i ⁢ z ⁢ t ⁢ 𝑑 t , z ∈ ℂ , F(z)=\int_{-1}^{1}f(t)e^{izt}\,dt,\quad z\in\mathbb{C}, given the data | F ⁢ ( z ) | {\lvert F(z)\rvert} or arg ⁡ F ⁢ ( z ) {\arg F(z)} for z ∈ ℝ {z\in\mathbb{R}} . Initially, we assume [ - 1 , 1 ] {[-1,1]} to be the convex hull of the support of the signal f. We start with reviewing the computation of the indicator function and indicator diagram of a finite-typed complex-valued entire function, and then connect to the spectral invariant of F ⁢ ( z ) {F(z)} . Then we focus to derive the unimodular part of the entire function up to certain non-uniqueness. We elaborate on the translation of the signal including the non-uniqueness associates of the Fourier transform. We show that the phase retrieval and magnitude retrieval are conjugate problems in the scattering theory of waves.


Author(s):  
Angela A. Albanese ◽  
Claudio Mele

AbstractIn this paper we continue the study of the spaces $${\mathcal O}_{M,\omega }({\mathbb R}^N)$$ O M , ω ( R N ) and $${\mathcal O}_{C,\omega }({\mathbb R}^N)$$ O C , ω ( R N ) undertaken in Albanese and Mele (J Pseudo-Differ Oper Appl, 2021). We determine new representations of such spaces and we give some structure theorems for their dual spaces. Furthermore, we show that $${\mathcal O}'_{C,\omega }({\mathbb R}^N)$$ O C , ω ′ ( R N ) is the space of convolutors of the space $${\mathcal S}_\omega ({\mathbb R}^N)$$ S ω ( R N ) of the $$\omega $$ ω -ultradifferentiable rapidly decreasing functions of Beurling type (in the sense of Braun, Meise and Taylor) and of its dual space $${\mathcal S}'_\omega ({\mathbb R}^N)$$ S ω ′ ( R N ) . We also establish that the Fourier transform is an isomorphism from $${\mathcal O}'_{C,\omega }({\mathbb R}^N)$$ O C , ω ′ ( R N ) onto $${\mathcal O}_{M,\omega }({\mathbb R}^N)$$ O M , ω ( R N ) . In particular, we prove that this isomorphism is topological when the former space is endowed with the strong operator lc-topology induced by $${\mathcal L}_b({\mathcal S}_\omega ({\mathbb R}^N))$$ L b ( S ω ( R N ) ) and the last space is endowed with its natural lc-topology.


Sign in / Sign up

Export Citation Format

Share Document