Prediction methods for two-phase flow frictional pressure drop of FC-72 in parallel micro-channels

2014 ◽  
Vol 38 (7) ◽  
pp. 821-827 ◽  
Author(s):  
Yong-Seok Choi ◽  
Tae-Woo Lim ◽  
Sam-Sang You
Author(s):  
Weilin Qu ◽  
Seok-Mann Yoon ◽  
Issam Mudawar

Knowledge of flow pattern and flow pattern transitions is essential to the development of reliable predictive tools for pressure drop and heat transfer in two-phase micro-channel heat sinks. In the present study, experiments were conducted with adiabatic nitrogen-water two-phase flow in a rectangular micro-channel having a 0.406 × 2.032 mm cross-section. Superficial velocities of nitrogen and water ranged from 0.08 to 81.92 m/s and 0.04 to 10.24 m/s, respectively. Flow patterns were first identified using high-speed video imaging, and still photos were then taken for representative patterns. Results reveal that the dominant flow patterns are slug and annular, with bubbly flow occurring only occasionally; stratified and churn flow were never observed. A flow pattern map was constructed and compared with previous maps and predictions of flow pattern transition models. Annual flow is identified as the dominant flow pattern for conditions relevant to two-phase micro-channel heat sinks, and forms the basis for development of a theoretical model for both pressure drop and heat transfer in micro-channels. Features unique to two-phase micro-channel flow, such as laminar liquid and gas flows, smooth liquid-gas interface, and strong entrainment and deposition effects are incorporated into the model. The model shows good agreement with experimental data for water-cooled heat sinks.


Author(s):  
Licheng Sun ◽  
Kaichiro Mishima

2092 data of two-phase flow pressure drop were collected from 18 published papers of which the working fluids include R123, R134a, R22, R236ea, R245fa, R404a, R407C, R410a, R507, CO2, water and air. The hydraulic diameter ranges from 0.506 to 12mm; Relo from 10 to 37000, and Rego from 3 to 4×105. 11 correlations and models for calculating the two-phase frictional pressure drop were evaluated based upon these data. The results show that the accuracy of the Lockhart-Martinelli method, Mishima and Hibiki correlation, Zhang and Mishima correlation and Lee and Mudawar correalion in the laminar region is very close to each other, while the Muller-Steinhagen and Heck correlation is the best among the evaluated correlations in the turbulent region. A modified Chisholm correlation was proposed, which is better than all of the evaluated correlations in the turbulent region and its mean relative error is about 29%. For refrigerants only, the new correlation and Muller-Steinhagen and Heck correlation are very close to each other and give better agreement than the other evaluated correlations.


2005 ◽  
Vol 4 (2) ◽  
Author(s):  
G. Ribatskia ◽  
J. R. Thome

This paper presents a state-of-the-art review of the hydrodynamic aspects of two-phase flow across horizontal tube bundles. The review covers studies related to the evaluation of void fraction, two-phase flow behaviors and pressure drops on the shell side of staggered and in-line tube bundles for upward, downward and side-to-side flows. This study of the literature critically describes the proposed flow pattern maps and semi-empirical correlations for predicting void fraction and frictional pressure drop. These predicting methods are generally based on experimental results for adiabatic air-water flows. A limited number of experimental studies with R-11 and R-113 were also carried out in the past. The review shows noticeable discrepancies among the available prediction methods. Finally, this study suggests that further research focusing on the development of representative databanks and new prediction methods is still necessary.


2004 ◽  
Vol 126 (4) ◽  
pp. 546-552 ◽  
Author(s):  
Peter M.-Y. Chung ◽  
Masahiro Kawaji ◽  
Akimaro Kawahara ◽  
Yuichi Shibata

An adiabatic experiment was conducted to investigate the effect of channel geometry on gas-liquid two-phase flow characteristics in horizontal microchannels. A water-nitrogen gas mixture was pumped through a 96 μm square microchannel and the resulting flow pattern, void fraction and frictional pressure drop data were compared with those previously reported by the authors for a 100 μm circular microchannel. The pressure drop data were best estimated using a separated-flow model and the void fraction increased non-linearly with volumetric quality, regardless of the channel shape. However, the flow maps exhibited transition boundaries that were shifted depending on the channel shape.


Author(s):  
Yuqing Xue ◽  
Huixiong Li ◽  
Tianyou Sheng ◽  
Changjiang Liao

A large amount of air need be transported into the reservoir in the deep stratum to supply oxygen to some microbes in Microbial Enhanced Oil Recovery (MEOR). Air-water two-phase flows downward along vertical pipeline during the air transportation. Base on the experiment data described in this paper, the characteristics of air-water two phase flow patterns were investigated. The flow pattern map of air-water two phase flows in the pipe with inner diameter of 65 mm was drawn, criterions of flow pattern transition were discussed, and the dynamic signals of the pressure and the differential pressure of the two phase flow were recorded to characterize the three basic flow regimes indirectly. The frictional pressure drop of downward flow in vertical pipe must not be disregarded contrast with upward two phase flow in the vertical pipe because the buoyancy must be overcame when the gas flows downward along pipe, and there would be a maximum value of frictional when the flow pattern translated from slug flow to churn flow.


Author(s):  
Hideo Ide ◽  
Tohru Fukano

Both vertical upward and horizontal gas-liquid two-phase flows in a flat capillary rectangular channel were studied to clarify the flow phenomena, the holdup and the frictional pressure drop. The dimension of the channel used was 9.9 mm × 1.1 mm. The orientations of the channel were with the wide side vertical and the wide side horizontal. The differences between the flow characteristics in such orientations were investigated. New correlations of holdup and frictional pressure drop for flat capillary channels are proposed, in which the effect of aspect ratio has been taken into consideration.


Sign in / Sign up

Export Citation Format

Share Document