Evaporating heat transfer characteristics of Aluminum-brass tube for seawater cooling system using R-134a

2017 ◽  
Vol 41 (3) ◽  
pp. 197-201 ◽  
Author(s):  
In-Ho Kang ◽  
Sung-Hoon Seol ◽  
Jung-In Yoon ◽  
Chang-Hyo Son
Author(s):  
Ashutosh Kumar Yadav ◽  
Parantak Sharma ◽  
Avadhesh Kumar Sharma ◽  
Mayank Modak ◽  
Vishal Nirgude ◽  
...  

Impinging jet cooling technique has been widely used extensively in various industrial processes, namely, cooling and drying of films and papers, processing of metals and glasses, cooling of gas turbine blades and most recently cooling of various components of electronic devices. Due to high heat removal rate the jet impingement cooling of the hot surfaces is being used in nuclear industries. During the loss of coolant accidents (LOCA) in nuclear power plant, an emergency core cooling system (ECCS) cool the cluster of clad tubes using consisting of fuel rods. Controlled cooling, as an important procedure of thermal-mechanical control processing technology, is helpful to improve the microstructure and mechanical properties of steel. In industries for heat transfer efficiency and homogeneous cooling performance which usually requires a jet impingement with improved heat transfer capacity and controllability. It provides better cooling in comparison to air. Rapid quenching by water jet, sometimes, may lead to formation of cracks and poor ductility to the quenched surface. Spray and mist jet impingement offers an alternative method to uncontrolled rapid cooling, particularly in steel and electronics industries. Mist jet impingement cooling of downward facing hot surface has not been extensively studied in the literature. The present experimental study analyzes the heat transfer characteristics a 0.15mm thick hot horizontal stainless steel (SS-304) foil using Internal mixing full cone (spray angle 20 deg) mist nozzle from the bottom side. Experiments have been performed for the varied range of water pressure (0.7–4.0 bar) and air pressure (0.4–5.8 bar). The effect of water and air inlet pressures, on the surface heat flux has been examined in this study. The maximum surface heat flux is achieved at stagnation point and is not affected by the change in nozzle to plate distance, Air and Water flow rates.


Author(s):  
Huimin Tang ◽  
Huiying Wu

In this paper, the silicon-based corrugated microchannels used for the heat transfer enhancement were fabricated by MEMS technology for the first time. Both the flow and convective heat transfer characteristics of the deionized water through these corrugated microchannels were investigated experimentally, and comparisons were performed between corrugated microchannels and straight microchannels with the same cross-sectional aspect ratio (height-to-width ratio) and same hydraulic diameter. Experimental results showed that both the flow friction and Nusselt number in corrugated microchannels increased considerably compared with those in straight microchannels, and this increase became enlarged with the increase in the Reynolds number. With the same pumping power, using corrugated microchannels instead of straight microchannels caused the reduction in the total thermal resistance. The heat transfer enhancement mechanism of the corrugated microchannels was discussed. The results presented in this paper help to design the high efficiency integrated chip cooling system.


Sign in / Sign up

Export Citation Format

Share Document