Empirical study on the application of fuel cell-battery hybrid electric propulsion systems in small coastal ships

2019 ◽  
Vol 43 (8) ◽  
pp. 648-654
Author(s):  
Kyoung-Wook Kang ◽  
Cheol-Hwan Jeon ◽  
Hyeon-Min Jeon ◽  
Jong-Su Kim
Author(s):  
Chana Anna Saias ◽  
Ioannis Goulos ◽  
Ioannis Roumeliotis ◽  
Vassilios Pachidis ◽  
Marko Bacic

Abstract The increasing demands for air-taxi operations together with the ambitious targets for reduced environmental impact have driven significant interest in alternative rotorcraft architectures and propulsion systems. The design of Hybrid-Electric Propulsion Systems (HEPSs) for rotorcraft is seen as being able to contribute to those goals. This work aims to conduct a comprehensive design and trade-off analysis of hybrid powerplants for rotorcraft, targeting enhanced payload-range capability and fuel economy. An integrated methodology for the design, performance assessment and optimal implementation of HEPSs for conceptual rotorcraft has been developed. A multi-disciplinary approach is devised comprising models for rotor aerodynamics, flight dynamics, HEPS performance and weight estimation. All models are validated using experimental or flight test data. The methodology is deployed for the assessment of a hybrid-electric tilt-rotor, modelled after the NASA XV-15. This work targets to provide new insight in the preliminary design and sizing of optimally designed HEPSs for novel tilt-rotor aircraft. The paper demonstrates that at present, current battery energy densities (250Wh/kg) severely limit the degree of hybridization if a fixed useful payload and range are to be achieved. However, it is also shown that if advancements in battery energy density to 500Wh/kg are realized, a significant increase in the level of hybridization and hence reduction of fuel burned and carbon output relative to the conventional configuration can be attained. The methodology presented is flexible enough to be applied to alternative rotorcraft configurations and propulsion systems.


Author(s):  
Ioannis Roumeliotis ◽  
Lorenzo Castro ◽  
Soheil Jafari ◽  
Vassilios Pachidis ◽  
Louis De Riberolles ◽  
...  

Abstract Future aircraft and rotorcraft propulsion systems should be able to meet ambitious targets and severe limitations set by governments and organizations. These targets cannot be achieved through marginal improvements in turbine technology or vehicle design. Hybrid-electric propulsion is being widely considered as a revolutionary concept to further improve the environmental impact of air travel. One of the most important challenges and barriers in the development phase of hybrid-electric propulsion systems is the Thermal Management System (TMS) design, sizing and optimization for addressing the increased thermal loads due to the electric power train. The aim of this paper is to establish an integrated simulation framework including the vehicle, the propulsion system and the fuel-oil system (FOS) for assessing the cooling capability of the FOS for the more electric era of rotorcrafts. The framework consists of a helicopter model, propulsion system models, both conventional and hybrid-electric, and a FOS model. The test case is a twin-engine medium (TEM) helicopter flying a representative Passenger Air Transport (PAT) mission. The conventional power plant heat loads are calculated and the cooling capacity of the FOS is quantified for different operating conditions. Having established the baseline, three different Power Management Strategies (PMS) are considered and the integrated simulation framework is utilized for evaluating FOS temperatures. The results highlight the limitations of existing rotorcraft FOS to cope with the high values of thermal loads associated with hybridization for the cases examined. Hence, new ideas and embodiments should be identified and assessed. The case of exploiting the fuel tank as a heat sink is investigated and the results indicate that recirculating fuel to the fuel tank can enhance the cooling capacity of conventional FOS.


2019 ◽  
Author(s):  
V Bolbot ◽  
G Theotokatos ◽  
E Boulougouris ◽  
D Vassalos

Cruise ship industry is rapidly developing, with both the vessels size and number constantly growing up, which renders ensuring passengers, crew and ship safety a paramount necessity. Collision, grounding and fire are among the most frequent accidents on cruise ships with high consequences. In this study, a hazard analysis of diesel-electric and hybrid-electric propulsion system is undertaken using System-Theoretic Process Analysis (STPA). The results demonstrate significant increase in potential hazardous scenarios due to failures in automation and control systems, leading to fire and a higher number of scenarios leading to propulsion and power loss in hybrid-electric propulsion systems than on a conventional cruise-ship propulsion system. Results also demonstrate that STPA enhancement is required to compare the risk of two propulsion systems.


Author(s):  
John C. Bentz

Electrical energy sources offer some interesting possibilies for aircraft propulsion. Of particular interest are electric propulsion systems developed for aircraft that are designed for high altitude, long endurance (HALE) missions. This class of aircraft would greatly benefit from an aircraft propulsion system which minimizes thermal energy rejection and environmental pollutants. Electric propulsion systems may prove viable for the HALE mission, if reliable energy sources can be developed that are both fuel and weight efficient. Fuel cells are a possible energy source. This paper discusses the thermodynamic cyclic analysis of a fuel cell powered electric propulsion system. In particular, phosphoric acid and polymer electrolyte fuel cells are evaluated as possible energy sources.


Energy ◽  
2020 ◽  
Vol 204 ◽  
pp. 117937 ◽  
Author(s):  
David Sziroczak ◽  
Istvan Jankovics ◽  
Istvan Gal ◽  
Daniel Rohacs

Sign in / Sign up

Export Citation Format

Share Document