scholarly journals In Vitro Sensitivity of Some Mycolic Acid-containing Actinomycetes to Nigella Sativa Extracts

2012 ◽  
Vol 2 (6) ◽  
pp. 111-113
Author(s):  
Arif F. Fadailallah ◽  
Adil Mahgoub ◽  
Mohamed E. Hamid
Keyword(s):  
2019 ◽  
Vol 12 (1) ◽  
pp. 27-49 ◽  
Author(s):  
Shahinda S.R. Alsayed ◽  
Chau C. Beh ◽  
Neil R. Foster ◽  
Alan D. Payne ◽  
Yu Yu ◽  
...  

Background:Mycolic acids (MAs) are the characteristic, integral building blocks for the mycomembrane belonging to the insidious bacterial pathogen Mycobacterium tuberculosis (M.tb). These C60-C90 long α-alkyl-β-hydroxylated fatty acids provide protection to the tubercle bacilli against the outside threats, thus allowing its survival, virulence and resistance to the current antibacterial agents. In the post-genomic era, progress has been made towards understanding the crucial enzymatic machineries involved in the biosynthesis of MAs in M.tb. However, gaps still remain in the exact role of the phosphorylation and dephosphorylation of regulatory mechanisms within these systems. To date, a total of 11 serine-threonine protein kinases (STPKs) are found in M.tb. Most enzymes implicated in the MAs synthesis were found to be phosphorylated in vitro and/or in vivo. For instance, phosphorylation of KasA, KasB, mtFabH, InhA, MabA, and FadD32 downregulated their enzymatic activity, while phosphorylation of VirS increased its enzymatic activity. These observations suggest that the kinases and phosphatases system could play a role in M.tb adaptive responses and survival mechanisms in the human host. As the mycobacterial STPKs do not share a high sequence homology to the human’s, there have been some early drug discovery efforts towards developing potent and selective inhibitors.Objective:Recent updates to the kinases and phosphatases involved in the regulation of MAs biosynthesis will be presented in this mini-review, including their known small molecule inhibitors.Conclusion:Mycobacterial kinases and phosphatases involved in the MAs regulation may serve as a useful avenue for antitubercular therapy.


2015 ◽  
Vol 1 (1) ◽  
pp. 01-24
Author(s):  
Shashikant Vaidya ◽  
◽  
Kapil Punjabi ◽  
Shreyasi Muley ◽  
Geeta Koppikar ◽  
...  
Keyword(s):  

2015 ◽  
Vol 33 ◽  
pp. 17-24 ◽  
Author(s):  
Md. Anirban Jyoti ◽  
Tamanna Zerin ◽  
Tae-Hyun Kim ◽  
Tae-Seon Hwang ◽  
Woong Sik Jang ◽  
...  

2014 ◽  
Vol 70 (a1) ◽  
pp. C429-C429
Author(s):  
Matthias Ehebauer ◽  
Madhan Anandhakrishnan ◽  
Michael Zimmermann ◽  
Elke Noens ◽  
Arjen Jakobi ◽  
...  

Mycobacteria have an unusual redundancy of six putative carboxyltransferase genes that form high-molecular weight holo acyl coenzyme A carboxylase complexes with a complementary set of three biotin carboxylase genes. Most of these enzyme complexes use small fatty acid coenzyme A esters as substrate, to allow their extension by one methylene group via a carboxybiotin-mediated α-carboxylation reaction. Redundant occurrence of these complexes was assumed to be related to highly complex enzymatic requirements in lipid biosynthesis, as the mycobacterial thick cell wall comprises unusual very long chain fatty acids, including mycolic acid. We have solved two high-resolution crystal structures of the 350 kDa hexameric assemblies of two different acyl coenzyme A carboxylase hexameric assemblies, AccD5 and AccD6 [1; Anandhakrishnan et al., unpublished], and characterized these enzyme complexes functionally. In a second step we investigated the acyl coenzyme A carboxylase complex AccD1-AccA1 from Mycobacteria tuberculosis with hitherto unknown function. By using a metabolomics approach we found that AccD1-AccA1 is involved in branched amino acid catabolism, which was not investigated in mycobacteria before [Ehebauer et al, unpublished. Using an in vitro assay, we show that the enzyme complex uses methylcrotonyl coenzyme A as substrate]. We determined the overall architecture of the 700 kDa AccD1-AccA1 complex to be formed from three layers of a central AccD1 hexameric ring, flanked by two distal tiers composed of three AccA1 subunits each. Our electron microscopy data match the overall dimensions of a methylcrotonyl coenzyme A holo complex with known structure and thus support our functional findings. Our data suggest a unique functional role of the AccD1-AccA1 complex within the Mycobacterium tuberculosis acyl coenzyme A carboxylase interactome. Ultimately, it is our goal to solve this and related structures of ACCase holo complexes by high-resolution crystallography as well. The abstract is dedicated to Louis Delbaere with whom I shared time during my PhD at the University of Basel, Switzerland.


1996 ◽  
Vol 40 (12) ◽  
pp. 2813-2819 ◽  
Author(s):  
R A Slayden ◽  
R E Lee ◽  
J W Armour ◽  
A M Cooper ◽  
I M Orme ◽  
...  

Thiolactomycin (TLM) possesses in vivo antimycobacterial activity against the saprophytic strain Mycobacterium smegmatis mc2155 and the virulent strain M. tuberculosis Erdman, resulting in complete inhibition of growth on solid media at 75 and 25 micrograms/ml, respectively. Use of an in vitro murine macrophage model also demonstrated the killing of viable intracellular M. tuberculosis in a dose-dependent manner. Through the use of in vivo [1,2-14C]acetate labeling of M. smegmatis, TLM was shown to inhibit the synthesis of both fatty acids and mycolic acids. However, synthesis of the shorter-chain alpha'-mycolates of M. smegmatis was not inhibited by TLM, whereas synthesis of the characteristic longer-chain alpha-mycolates and epoxymycolates was almost completely inhibited at 75 micrograms/ml. The use of M. smegmatis cell extracts demonstrated that TLM specifically inhibited the mycobacterial acyl carrier protein-dependent type II fatty acid synthase (FAS-II) but not the multifunctional type I fatty acid synthase (FAS-I). In addition, selective inhibition of long-chain mycolate synthesis by TLM was demonstrated in a dose-response manner in purified, cell wall-containing extracts of M. smegmatis cells. The in vivo and in vitro data and knowledge of the mechanism of TLM resistance in Escherichia coli suggest that two distinct TLM targets exist in mycobacteria, the beta-ketoacyl-acyl carrier protein synthases involved in FAS-II and the elongation steps leading to the synthesis of the alpha-mycolates and oxygenated mycolates. The efficacy of TLM against M. smegmatis and M. tuberculosis provides the prospects of identifying fatty acid and mycolic acid biosynthetic genes and revealing a novel range of chemotherapeutic agents directed against M. tuberculosis.


2016 ◽  
Vol 84 (8) ◽  
pp. 2264-2273 ◽  
Author(s):  
Shinya Watanabe ◽  
Kazunori Matsumura ◽  
Hiroki Iwai ◽  
Keiji Funatogawa ◽  
Yuji Haishima ◽  
...  

Mycobacterium tuberculosiscontains a single rRNA operon that encodes targets for antituberculosis agents, including kanamycin. To date, only four mutations in the kanamycin binding sites of 16S rRNA have been reported in kanamycin-resistant clinical isolates. We hypothesized that another mutation(s) in the region may dramatically decreaseM. tuberculosisviability and virulence. Here, we describe an rRNA mutation, U1406A, which was generatedin vitroand confers resistance to kanamycin while highly attenuatingM. tuberculosisvirulence. The mutant showed decreased expression of 20% (n= 361) of mycobacterial proteins, including central metabolic enzymes, mycolic acid biosynthesis enzymes, and virulence factors such as antigen 85 complexes and ESAT-6. The mutation also induced three proteins, including KsgA (Rv1010; 16S rRNA adenine dimethyltransferase), which closely bind to the U1406A mutation site on the ribosome; these proteins were associated with ribosome maturation and translation initiation processes. The mutant showed an increase in 17S rRNA (precursor 16S rRNA) and a decrease in the ratio of 30S subunits to the 70S ribosomes, suggesting that the U1406A mutation in 16S rRNA attenuatedM. tuberculosisvirulence by affecting these processes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ei’ichi Iizasa ◽  
Yasushi Chuma ◽  
Takayuki Uematsu ◽  
Mio Kubota ◽  
Hiroaki Kawaguchi ◽  
...  

AbstractMycobacterial cell-wall glycolipids elicit an anti-mycobacterial immune response via FcRγ-associated C-type lectin receptors, including Mincle, and caspase-recruitment domain family member 9 (CARD9). Additionally, mycobacteria harbor immuno-evasive cell-wall lipids associated with virulence and latency; however, a mechanism of action is unclear. Here, we show that the DAP12-associated triggering receptor expressed on myeloid cells 2 (TREM2) recognizes mycobacterial cell-wall mycolic acid (MA)-containing lipids and suggest a mechanism by which mycobacteria control host immunity via TREM2. Macrophages respond to glycosylated MA-containing lipids in a Mincle/FcRγ/CARD9-dependent manner to produce inflammatory cytokines and recruit inducible nitric oxide synthase (iNOS)-positive mycobactericidal macrophages. Conversely, macrophages respond to non-glycosylated MAs in a TREM2/DAP12-dependent but CARD9-independent manner to recruit iNOS-negative mycobacterium-permissive macrophages. Furthermore, TREM2 deletion enhances Mincle-induced macrophage activation in vitro and inflammation in vivo and accelerates the elimination of mycobacterial infection, suggesting that TREM2-DAP12 signaling counteracts Mincle-FcRγ-CARD9-mediated anti-mycobacterial immunity. Mycobacteria, therefore, harness TREM2 for immune evasion.


2017 ◽  
Vol 27 (11) ◽  
pp. 1932-1941 ◽  
Author(s):  
Sukyung Kim ◽  
Hoonhee Seo ◽  
Hafij Al Mahmud ◽  
Md Imtiazul Islam ◽  
Yong-Sik Kim ◽  
...  

2019 ◽  
Vol 63 (10) ◽  
Author(s):  
Małgorzata Korycka-Machała ◽  
Albertus Viljoen ◽  
Jakub Pawełczyk ◽  
Paulina Borówka ◽  
Bożena Dziadek ◽  
...  

ABSTRACT 1H-benzo[d]imidazole derivatives exhibit antitubercular activity in vitro at a nanomolar range of concentrations and are not toxic to human cells, but their mode of action remains unknown. Here, we showed that these compounds are active against intracellular Mycobacterium tuberculosis. To identify their target, we selected drug-resistant M. tuberculosis mutants and then used whole-genome sequencing to unravel mutations in the essential mmpL3 gene, which encodes the integral membrane protein that catalyzes the export of trehalose monomycolate, a precursor of the mycobacterial outer membrane component trehalose dimycolate (TDM), as well as mycolic acids bound to arabinogalactan. The drug-resistant phenotype was also observed in the parental strain overexpressing the mmpL3 alleles carrying the mutations identified in the resistors. However, no cross-resistance was observed between 1H-benzo[d]imidazole derivatives and SQ109, another MmpL3 inhibitor, or other first-line antitubercular drugs. Metabolic labeling and quantitative thin-layer chromatography (TLC) analysis of radiolabeled lipids from M. tuberculosis cultures treated with the benzoimidazoles indicated an inhibition of trehalose dimycolate (TDM) synthesis, as well as reduced levels of mycolylated arabinogalactan, in agreement with the inhibition of MmpL3 activity. Overall, this study emphasizes the pronounced activity of 1H-benzo[d]imidazole derivatives in interfering with mycolic acid metabolism and their potential for therapeutic application in the fight against tuberculosis.


Sign in / Sign up

Export Citation Format

Share Document