scholarly journals Diurnal Variations of the Surface Water Temperature in the Open Sea

1951 ◽  
Vol 6 (3) ◽  
pp. 165-167
Author(s):  
J. Masuzawa
Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1109
Author(s):  
Nobuaki Kimura ◽  
Kei Ishida ◽  
Daichi Baba

Long-term climate change may strongly affect the aquatic environment in mid-latitude water resources. In particular, it can be demonstrated that temporal variations in surface water temperature in a reservoir have strong responses to air temperature. We adopted deep neural networks (DNNs) to understand the long-term relationships between air temperature and surface water temperature, because DNNs can easily deal with nonlinear data, including uncertainties, that are obtained in complicated climate and aquatic systems. In general, DNNs cannot appropriately predict unexperienced data (i.e., out-of-range training data), such as future water temperature. To improve this limitation, our idea is to introduce a transfer learning (TL) approach. The observed data were used to train a DNN-based model. Continuous data (i.e., air temperature) ranging over 150 years to pre-training to climate change, which were obtained from climate models and include a downscaling model, were used to predict past and future surface water temperatures in the reservoir. The results showed that the DNN-based model with the TL approach was able to approximately predict based on the difference between past and future air temperatures. The model suggested that the occurrences in the highest water temperature increased, and the occurrences in the lowest water temperature decreased in the future predictions.


2021 ◽  
Author(s):  
Zongqi Peng ◽  
Jiaying Yang ◽  
Yi Luo ◽  
Kun Yang ◽  
Chunxue Shang

2021 ◽  
Vol 13 (17) ◽  
pp. 3461
Author(s):  
Pavel Kishcha ◽  
Boris Starobinets ◽  
Yury Lechinsky ◽  
Pinhas Alpert

This study was carried out using Moderate Resolution Imaging Spectroradiometer (MODIS) 1 km × 1 km resolution records on board Terra and Aqua satellites and in-situ measurements during the period (2003–2019). In spite of the presence of increasing atmospheric warming, in summer when evaporation is maximal, in fresh-water Lake Kinneret, satellite data revealed the absence of surface water temperature (SWT) trends. The absence of SWT trends in the presence of increasing atmospheric warming is an indication of the influence of increasing evaporation on SWT trends. The increasing water cooling, due to the above-mentioned increasing evaporation, compensated for increasing heating of surface water by regional atmospheric warming, resulting in the absence of SWT trends. In contrast to fresh-water Lake Kinneret, in the hypersaline Dead Sea, located ~100 km apart, MODIS records showed an increasing trend of 0.8 °C decade−1 in summer SWT during the same study period. The presence of increasing SWT trends in the presence of increasing atmospheric warming is an indication of the absence of steadily increasing evaporation in the Dead Sea. This is supported by a constant drop in Dead Sea water level at the rate of ~1 m/year from year to year during the last 25-year period (1995–2020). In summer, in contrast to satellite measurements, in-situ measurements of near-surface water temperature in Lake Kinneret showed an increasing trend of 0.7 °C  decade−1.


Sign in / Sign up

Export Citation Format

Share Document