scholarly journals Crystallography of High-Tc Superconductors. 7. Microstructure of High Temperature Superconductors and Critical Current Density.

1992 ◽  
Vol 34 (5) ◽  
pp. 324-330
Author(s):  
Masato Murakami
MRS Bulletin ◽  
1988 ◽  
Vol 13 (10) ◽  
pp. 56-61 ◽  
Author(s):  
H.J. Scheel ◽  
F. Licci

The discovery of high temperature superconductivity (HTSC) in oxide compounds has confronted materials scientists with many challenging problems. These include the preparation of ceramic samples with critical current density of about 106 A/cm2 at 77 K and sufficient mechanical strength for large-scale electrotechnical and magnetic applications and the preparation of epitaxial thin films of high structural perfection for electronic devices.The main interest in the growth of single crystals is for the study of physical phenomena, which will help achieve a theoretical understanding of HTSC. Theorists still do not agree on the fundamental mechanisms of HTSC, and there is a need for good data on relatively defect-free materials in order to test the many models. In addition, the study of the role of defects like twins, grain boundaries, and dislocations in single crystals is important for understanding such parameters as the critical current density. The study of HTSC with single crystals is also expected to be helpful for finding optimum materials for the various applications and hopefully achieving higher values of the superconducting transition temperature Tc than the current maximum of about 125 K. It seems unlikely at present that single crystals will be used in commercial devices, but this possibility cannot be ruled out as crystal size and quality improve.


1991 ◽  
Vol 05 (14n15) ◽  
pp. 993-999 ◽  
Author(s):  
HUIMIN SHAO ◽  
MU LU ◽  
TIANCHANG LU ◽  
XICHUN JIN ◽  
LINJIANG SHEN ◽  
...  

This paper describes our efforts to improve the preparation conditions of YBCO samples and increase their density by doping with Sn, F, or Ag and our analysis of the influence of different grain boundaries on superconducting current. We come to the conclusion that, as the grain boundaries have an insulation layer between them forming Josephson junctions and the metalled grain boundaries form proximity junctions which are kind of weak couplings for superconductors, the current-carrying capacity of samples having such grain boundaries cannot be expected to greatly increase. Only by increasing the density of samples and purifying the grain boundaries can a better percolation path for supercurrent be created, thereby considerably increasing the critical current density.


1994 ◽  
Vol 23 (11) ◽  
pp. 1191-1197 ◽  
Author(s):  
A. Goyal ◽  
E. D. Specht ◽  
Z. L. Wang ◽  
D. M. Kroeger ◽  
J. A. Sutliff ◽  
...  

1992 ◽  
Vol 275 ◽  
Author(s):  
K. Jagannadham ◽  
J. Narayan

ABSTRACTWe have modelled the grain boundaries in high-Tc superconducting oxides and determined the critical current density. The tunneling of superconducting pairs across the coalesced regions is used to determine the boundary effects. The length of the coalesced regions, with continuity of the Cu-O planes maintained by relaxation of the atom positions, is determined by minimization of the energy of the configuration. The depression of the order parameter is evaluated using the continuity conditions at the boundary in the proximity effect formulation. The excess charge distribution at the core of the boundary, determined from the solution to the Poisson's equation, is used to determine the scattering of the superconducting pairs. The width of the boundary, evaluated from modelling, determines the transmission coefficient for tunnelingof superconducting pairs. The critical current density is expressed in terms of these four important factors associated with the grain boundary. All the experimental results are explained by the present modelling of the grain boundary effects.


Sign in / Sign up

Export Citation Format

Share Document