scholarly journals Crystal Structure Analysis Using Scanning Transmission Electron Microscopy

2019 ◽  
Vol 61 (1) ◽  
pp. 15-22
Author(s):  
Koji KIMOTO
2015 ◽  
Vol 1760 ◽  
Author(s):  
Norihiko L. Okamoto ◽  
Akira Yasuhara ◽  
Katsushi Tanaka ◽  
Haruyuki Inui

ABSTRACTThe crystal structure of the δ1p phase in the Fe-Zn system has been refined by single-crystal synchrotron X-ray diffraction combined with ultra-high resolution scanning transmission electron microscopy. The crystal structure can be described to build up with Fe-centered Zn12 icosahedra. The deformation properties obtained by single-crystal micropillar compression tests of the δ1p phase is discussed in terms of the arrangement of the Fe-centered Zn12 icosahedra in contrast with the ζ phase in the Fe-Zn system.


Author(s):  
F. Khoury ◽  
L. H. Bolz

The lateral growth habits and non-planar conformations of polyethylene crystals grown from dilute solutions (<0.1% wt./vol.) are known to vary depending on the crystallization temperature.1-3 With the notable exception of a study by Keith2, most previous studies have been limited to crystals grown at <95°C. The trend in the change of the lateral growth habit of the crystals with increasing crystallization temperature (other factors remaining equal, i.e. polymer mol. wt. and concentration, solvent) is illustrated in Fig.l. The lateral growth faces in the lozenge shaped type of crystal (Fig.la) which is formed at lower temperatures are {110}. Crystals formed at higher temperatures exhibit 'truncated' profiles (Figs. lb,c) and are bound laterally by (110) and (200} growth faces. In addition, the shape of the latter crystals is all the more truncated (Fig.lc), and hence all the more elongated parallel to the b-axis, the higher the crystallization temperature.


Sign in / Sign up

Export Citation Format

Share Document