Advancement in the Application of Finite Element Analysis to the Optimization of Composite Yacht Structures

2011 ◽  
Author(s):  
David Fornaro

Finite Element Analysis (FEA) is mature technology that has been in use for several decades as a tool to optimize structures for a wide variety of applications. Its application to composite structures is not new, however the technology for modeling and analyzing the behavior of composite structures continues to evolve on several fronts. This paper provides a review of the current state-of-the-art with regard to composites FEA, with a particular emphasis on applications to yacht structures. Topics covered are divided into three categories: Pre-processing; Postprocessing; and Non-linear Solutions. Pre-processing topics include meshing, ply properties, laminate definitions, element orientations, global ply tracking and load case development. Post-processing topics include principal stresses, failure indices and strength ratios. Nonlinear solution topics include progressive ply failure. Examples are included to highlight the application of advanced finite element analysis methodologies to the optimization of composite yacht structures.

2015 ◽  
Vol 815 ◽  
pp. 49-53
Author(s):  
Nur Fitriah Isa ◽  
Mohd Zulham Affandi Mohd Zahid ◽  
Liyana Ahmad Sofri ◽  
Norrazman Zaiha Zainol ◽  
Muhammad Azizi Azizan ◽  
...  

In order to promote the efficient use of composite materials in civil engineering infrastructure, effort is being directed at the development of design criteria for composite structures. Insofar as design with regard to behavior is concerned, it is well known that a key step is to investigate the influence of geometric differences on the non-linear behavior of the panels. One possible approach is to use the validated numerical model based on the non-linear finite element analysis (FEA). The validation of the composite panel’s element using Trim-deck and Span-deck steel sheets under axial load shows that the present results have very good agreement with experimental references. The developed finite element (FE) models are found to reasonably simulate load-displacement response, stress condition, giving percentage of differences below than 15% compared to the experimental values. Trim-deck design provides better axial resistance than Span-deck. More concrete in between due to larger area of contact is the factor that contributes to its resistance.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Xiaodong He ◽  
Christopher-Denny Matte ◽  
Tsz-Ho Kwok

AbstractThe paper presents a novel manufacturing approach to fabricate origami based on 3D printing utilizing digital light processing. Specifically, we propose to leave part of the model uncured during the printing step, and then cure it in the post-processing step to set the shape in a folded configuration. While the cured regions in the first step try to regain their unfolded shape, the regions cured in the second step attempt to keep their folded shape. As a result, the final shape is obtained when both regions’ stresses reach equilibrium. Finite element analysis is performed in ANSYS to obtain the stress distribution on common hinge designs, demonstrating that the square-hinge has a lower maximum principal stress than elliptical and triangle hinges. Based on the square-hinge and rectangular cavity, two variables—the hinge width and the cavity height—are selected as principal variables to construct an empirical model with the final folding angle. In the end, experimental verification shows that the developed method is valid and reliable to realize the proposed deformation and 3D development of 2D hinges.


Author(s):  
Ane de Boer ◽  
Max A. N. Hendriks ◽  
Eva O. L. Lantsoght

<p>The Dutch Ministry of Infrastructure and the Environment is concerned with the safety of existing infrastructure and expected re-analysis of a large number of bridges and viaducts. Nonlinear finite element analysis can provide a tool to assess safety; a more realistic estimation of the existing safety can be obtained.</p><p>Dutch Guidelines, based on scientific research, general consensus among peers, and a long-term experience with nonlinear analysis, allow for a reduction of model and user factors and improve the robustness of nonlinear finite element analyses.</p><p>The 2017 version of the guidelines can be used for the finite element analysis of basic concrete structural elements like beams, girders and slabs, reinforced or prestressed. Existing structures, like box-girder structures, culverts and bridge decks with prestressed girders in composite structures can be analysed.</p><p>The guidelines have been developed with a two-fold purpose. First, to advice analysts on nonlinear finite element analysis of reinforced and pre-stressed concrete structures. Second, to explain the choices made and to educate analysts, related to the responsibility of limiting model uncertainty.</p><p>This paper contains an overview of the latest version of the guideline and its latest validation extensions. Most important impact is the extended operational lifetime of an existing reinforced concrete slab structure.</p>


Sign in / Sign up

Export Citation Format

Share Document