Concurrent Engineering: Application and Implementation for U.S. Shipbuilding

1996 ◽  
Vol 12 (02) ◽  
pp. 107-125
Author(s):  
James G. Bennett ◽  
Thomas Lamb

This paper reports on a SP-8 Panel project to analyze the application of Concurrent Engineering (CE) in U.S. shipbuilding and to perform a pilot implementation of CE within a U.S. shipyard. It describes (1) results of a Shipbuilding Concurrent Engineering Questionnaire survey; (2) a summary of product development performance benchmark surveys conducted at several U.S. shipyards; (3) visit to several foreign shipyards as well as Boeing Commercial Aircraft Company, Lockheed Missiles and Space Company, and the Concurrent Engineering Research Center to discuss implementation of CE; (4) requirements for successful CE implementation by U.S. shipbuilders; and (5) the status of the pilot CE implementation at Bath Iron Works Corporation.

Author(s):  
Khairana Ayu Shabrina ◽  
Rudi Siap Bintoro ◽  
Giman Giman

<p>Teluk Prigi merupakan perairan di pesisir Samudera Hindia yang dikelilingi oleh bentang alam tebing yang tinggi sehingga wilayah pesisir yang memiliki kondisi dinamis dapat mengakibatkan terjadinya perubahan garis pantai apabila tidak dikelola dengan baik. Maka dari itu pada penelitian ini bertujuan untuk mengetahui faktor oseanografi yang menyebabkan terjadinya perubahan garis pantai. Metode yang digunakan terdiri dari pemisahan arus, peramalan gelombang, gelombang pecah, energi gelombang dan refraksi gelombang dengan menggunakan metode menurut <em>Coastal Engineering Research Center </em>(CERC). Selain itu ekstraksi garis pantai dengan metode <em>NDWI (Normal Differential Water Index)</em>, dan analisis jenis sedimen menggunakan modul yang dikeluarkan oleh Pusjatan Balitbang PU. Faktor oseanografi yang dominan menjadi penyebab perubahan garis pantai adalah gelombang bangkitan angin yang pola gelombangnya mengalami perubahan arah yang cenderung tegak lurus pantai, selain itu arus pasang surut menjadi faktor pendukung dengan kecepatan 0,0037 m/s bergerak menuju Utara. Sehingga, kondisi garis pantai pada tahun 2003 dan 2014, 2014 dan 2018 luasan sedimentasi terbesar mencapai 28.949 m<sup>2</sup> dan 52.020 m<sup>2</sup> yang berada di Desa Prigi. Sedangkan Sedangkan lokasi abrasi pada tahun 2003 dan 2014, 2014 dan 2018 luasnya mencapai 4.204 m<sup>2</sup> dan 3.326 m<sup>2</sup>.</p>


Author(s):  
J Poolton ◽  
I Barclay

There are few studies that have found an adequate means of assessing firms based on their specific needs for a concurrent engineering (CE) approach. Managers interested in introducing CE have little choice but to rely on their past experiences of introducing change. Using data gleaned from a nine month case study, a British-wide survey and a series of in-depth interviews, this paper summarizes the findings of a research study that examines how firms orientate themselves towards change and how they go about introducing CE to their operations. The data show that there are many benefits to introducing CE and that firms differ with respect to their needs for the CE approach. A tentative means to assess CE ‘needs’ is proposed which is based on the level of complexity of goods produced by firms. The method is currently being developed and extended to provide an applications-based framework to assist firms to improve their new product development performance.


Author(s):  
Samuel Suss ◽  
Vincent Thomson

Product development processes of complex products are complex themselves and particularly difficult to plan and manage effectively. Although many organizations manage their product development processes by monitoring the status of documents that are created as deliverables, in fact the progress of the process is in large part based on the actual information flow which is required to develop the product and produce the documents. A vital element in making product development processes work well is the correct understanding of how information flows and how to facilitate its development. In this paper we describe an executable stochastic model of the product development process that incorporates the salient features of the interplay between the information development, exchange and progress of the technical work. Experiments with the model provide insight into the mechanisms that drive these complex processes.


1997 ◽  
Vol 7 (1) ◽  
pp. 662-669 ◽  
Author(s):  
Stefan Wenzel ◽  
Thomas Bauch ◽  
Ernst Fricke ◽  
Herbert Negele

Author(s):  
Ulf Sellgren ◽  
Cecilia Hakelius

Abstract Technology and engineering might be characterized as becoming more knowledge-intensive. A huge amount of data is used and produced in most product development projects. Increasing competition requires shorter reaction time to customer demands and a higher level of innovation. Concurrent Engineering (CE) is a strategic response to competition. It has proved to be a powerful approach to integrating engineering activities in product development. However, integration and parallel activities, that is the essence of CE, add complexity to the process. Consequently, information management is recognized as a major component in many CE models. Product Data Management (PDM) systems are a class of computer based systems that address the need to manage product related information that is mainly formal and computer interpretable. PDM systems are sometimes referred to as CE enablers. Results from a resent survey of PDM implementation projects in six Swedish industrial companies, with products ranging from telecommunications systems to trucks and medical equipment, indicate the importance of also utilizing the Concurrent Engineering (CE) approach in the process of implementing an enterprise-wide PDM solution.


Author(s):  
J. Schmitz ◽  
S. Desa

Abstract It is well-known that so-called Concurrent Engineering is a desirable alternative to the largely sequential methods which tend to dominate most product development methods. However, the proper implementation of a concurrent engineering method is still relatively rare. In order to facilitate the development of a reliable concurrent engineering product development method, we start with a careful definition of concurrent engineering and, after an extensive study of all of product development, we propose three criteria which ideal concurrent engineering must satisfy. However, for labor, time, and overall cost considerations, ideal concurrent engineering is infeasible. Instead, we propose a computer-based environment which, by being constructed in accordance with the three criteria, attempts to approach ideal concurrent engineering. The result is the Virtual Concurrent Engineering method and computer implementation environment. This product development method and computer-based implementation system provide the detailed, structured information and data needed to optimally balance the product with respect to the main product development parameters (e.g., manufacturing costs, assembly, reliability). This important information includes re-design suggestions to improve the existing design. The designer can directly apply these re-design suggestions for design optimization, or he can use the results as input into a more complex design optimization or design parameterization function of his own. To demonstrate Virtual Concurrent Engineering, we use it to refine earlier work done by the authors in the Design for Producibility of stamped products. We discuss, in some detail, the results of applying Design for Producibility to complex stampings, including process plans and product producibility computations.


Sign in / Sign up

Export Citation Format

Share Document