Application of the Unsteady-Lifting-Surface Theory to the Study of Propeller-Rudder Interaction
The propeller-rudder interaction problem is studied by means of the unsteady-lifting- surface theory. Both surfaces of arbitrary geometry are immersed in a non-uniform flow- field (i.e., hull wake) of an ideal incompressible fluid. The boundary-value problem yields a pair of surface integral equations, the inversion of which is achieved by the so- called "generalized lift operator" technique, a new approach developed by the authors, in conjunction with the presently used "mode-collocation" method. The analysis demonstrates the mechanism of the interaction phenomenon by exhibiting the filtering effects of the propeller on the harmonic constituents of the wake which allow the rudder to be exposed only to the blade harmonic and multiples thereof. A numerical procedure adaptable to the CDC 6600 computer has been developed which furnishes information about (i) the steady and time-dependent pressure distribution on both lifting surfaces, and (ii) the resultant hydrodynamic forces and moments. A limited number of calculations exhibit the importance of some parameters such as axial clearance, number of blades, and harmonic components of the hull wake.