Effect of Heavy Weather Maneuvering on the Wave-Induced Vertical Bending Moments in Ship Structures

1990 ◽  
Vol 34 (01) ◽  
pp. 60-68 ◽  
Author(s):  
C. Guedes Soares

Statistical data are collected so as to quantify the probability of occurrence of voluntary course changes in heavy weather as well as their dependence on significant wave height and on ship heading. Decision rules are established about when and how to change course, on the basis of the analysis of operational data and of interviews with experienced shipmasters. A Monte Carlo simulation is performed so as to determine how an omnidirectional distribution of initial headings is changed by voluntary course changes depending on the significant wave height. Finally, the effect of the nonuniform distribution of headings on the mean wave-induced vertical bending moment is calculated. It is shown that although heavy weather maneuvering eases the ship motions, it can increase the wave-induced bending moments and thus increase the probability of structural failure.

Author(s):  
Céline Drouet ◽  
Nicolas Cellier ◽  
Jérémie Raymond ◽  
Denis Martigny

In-service monitoring can help to increase safety of ships especially regarding the fatigue assessment. For this purpose, it is compulsory to know the environmental conditions encountered: wind, but also the full directional wave spectrum. During the EU TULCS project, a full scale measurements campaign has been conducted onboard the CMA-CGM 13200 TEU container ship Rigoletto. She has been instrumented to measure deformation of the ship as well as the sea state encountered during its trip. This paper will focus on the sea state estimation. Three systems have been installed to estimate the sea state encountered by the Rigoletto: An X-band radar from Ocean Waves with WAMOS® system and two altimetric wave radars from RADAC®. Nevertheless, the measured significant wave height can be disturbed by several external elements like bow waves, sprays, sea surface ripples, etc… Furthermore, ship motions are also measured and can provide another estimation of the significant wave height using a specific algorithm developed by DCNS Research for the TULCS project. As all those estimations are inherently different, it is necessary to make a fusion of those data to provide a single estimation (“best estimate”) of the significant wave height. This paper will present the data fusion process developed for TULCS and show some first validation results.


2015 ◽  
Vol 18 (2) ◽  
pp. 371-391 ◽  
Author(s):  
Morteza Zanganeh ◽  
Abbas Yeganeh-Bakhtiary ◽  
Takao Yamashita

In this study, the adaptive network-based fuzzy inference system (ANFIS) and artificial neural network (ANN) were employed to estimate the wind- and wave-induced coastal current velocities. The collected data at the Joeutsu-Ogata coast of the Japan Sea were used to develop the models. In the models, significant wave height, wave period, wind direction, water depth, incident wave angle, and wind speed were considered as the input variables; and longshore and cross-shore current velocities as the output variables. The comparison of the models showed that the ANN model outperforms the ANFIS model. In addition, evaluation of the models versus the multiple linear regression and multiple nonlinear regression with power functions models indicated their acceptable accuracy. A sensitivity test proved the stronger effects of wind speed and wind direction on longshore current velocities. In addition, this test showed great effects of significant wave height on cross-shore currents' velocities. It was concluded that the angle of incident wave, water depth, and significant wave period had weaker influences on the velocity of coastal currents.


Author(s):  
Quentin Derbanne ◽  
Fabien Bigot ◽  
Guillaume de Hauteclocque

The evaluation of extreme bending moment corresponding to a 25 years return period requires very long simulations on a large number of sea states. This long term analysis is easy to do with a linear model of the ship response, but is impractical when using a time consuming model including non linear and slamming loads. In that case some simplified methods need to be applied. These methods are often based on Equivalent Design Waves (EDW) which are calibrated on the extreme linear value. The general practice is to define the EDW as a regular wave. A very simple method is to compute the non linear bending moment applying the pressure correction on the hull without recomputing the ship motions. A better method is to recompute in time domain the non linear ship response on this Design Wave. It is even possible to define a more realistic Design Wave, taking into account the frequency and directional content of the sea states used in the long term analysis: those waves are called Response Conditioned Wave and Directional Response Conditioned Waves. The different methods are applied to an Ultra Large Container Ship (ULCS). Hydro-structure calculations are carried out on a severe design sea state, taking into account Froude-Krylov pressure correction, slamming forces and whipping response. Results of a very long computation are compared to the results of the Design Wave approaches. Another method is proposed to compute very rare events. It is based on an artificial increase of the significant wave height of the sea state, and the assumption of the independence of the non linear effects to the significant wave height. Using this method it is possible, with a simulation of only a few hours, to predict a very rare short term event, corresponding to a very long return period. The results are compared to the Design Wave results and appear to be much more precise.


Author(s):  
Jeffrey D. Ouellette ◽  
William T. Bounds ◽  
David J. Dowgiallo ◽  
Jakov V. Toporkov ◽  
Paul A. Hwang

2021 ◽  
Vol 13 (2) ◽  
pp. 195
Author(s):  
He Wang ◽  
Jingsong Yang ◽  
Jianhua Zhu ◽  
Lin Ren ◽  
Yahao Liu ◽  
...  

Sea state estimation from wide-swath and frequent-revisit scatterometers, which are providing ocean winds in the routine, is an attractive challenge. In this study, state-of-the-art deep learning technology is successfully adopted to develop an algorithm for deriving significant wave height from Advanced Scatterometer (ASCAT) aboard MetOp-A. By collocating three years (2016–2018) of ASCAT measurements and WaveWatch III sea state hindcasts at a global scale, huge amount data points (>8 million) were employed to train the multi-hidden-layer deep learning model, which has been established to map the inputs of thirteen sea state related ASCAT observables into the wave heights. The ASCAT significant wave height estimates were validated against hindcast dataset independent on training, showing good consistency in terms of root mean square error of 0.5 m under moderate sea condition (1.0–5.0 m). Additionally, reasonable agreement is also found between ASCAT derived wave heights and buoy observations from National Data Buoy Center for the proposed algorithm. Results are further discussed with respect to sea state maturity, radar incidence angle along with the limitations of the model. Our work demonstrates the capability of scatterometers for monitoring sea state, thus would advance the use of scatterometers, which were originally designed for winds, in studies of ocean waves.


2021 ◽  
Vol 9 (3) ◽  
pp. 309
Author(s):  
James Allen ◽  
Gregorio Iglesias ◽  
Deborah Greaves ◽  
Jon Miles

The WaveCat is a moored Wave Energy Converter design which uses wave overtopping discharge into a variable v-shaped hull, to generate electricity through low head turbines. Physical model tests of WaveCat WEC were carried out to determine the device reflection, transmission, absorption and capture coefficients based on selected wave conditions. The model scale was 1:30, with hulls of 3 m in length, 0.4 m in height and a freeboard of 0.2 m. Wave gauges monitored the surface elevation at discrete points around the experimental area, and level sensors and flowmeters recorded the amount of water captured and released by the model. Random waves of significant wave height between 0.03 m and 0.12 m and peak wave periods of 0.91 s to 2.37 s at model scale were tested. The wedge angle of the device was set to 60°. A reflection analysis was carried out using a revised three probe method and spectral analysis of the surface elevation to determine the incident, reflected and transmitted energy. The results show that the reflection coefficient is highest (0.79) at low significant wave height and low peak wave period, the transmission coefficient is highest (0.98) at low significant wave height and high peak wave period, and absorption coefficient is highest (0.78) when significant wave height is high and peak wave period is low. The model also shows the highest Capture Width Ratio (0.015) at wavelengths on the order of model length. The results have particular implications for wave energy conversion prediction potential using this design of device.


Sign in / Sign up

Export Citation Format

Share Document