Research on Application of Waste Plastic Disposal of Marine Diesel Engines

2008 ◽  
Vol 45 (04) ◽  
pp. 191-193
Author(s):  
Wei Hai-jun ◽  
Wang Guo-you ◽  
Wang Xiao-rui

The purpose of this paper is to study the applicability of thermal processed fuel oil (hereafter called waste plastic disposal, or WPD) of diesel engines using low-quality fuel oil. In the experiment, stability of engine operation and components of exhaust gas, such as NOx and COx, were inspected from basic and applicable points of view. This paper illustrates a new test and result of WPD oil applied to marine diesel engines. In recent years, efforts have to be made to develop an advanced technique for recycling waste plastics in order to use scrapped plastics as fuel for diesel engines. It is very important and necessary for us to cope with the increasing calorific value and to satisfy the growing need of environment protection. The experimental fuel oil is obtained by a mixing of diesel oil, WPD, and water.

Author(s):  
Tatsuro Tsukamoto ◽  
Kenji Ohe ◽  
Hiroshi Okada

In these years, a problem of air pollution in a global scale becomes a matter of great concern. In such social situation, diesel engines are strongly required to reduce the NOx and particulate emission in the exhaust gas. In this paper, measurements of particulate emissions from a low speed two-stroke marine diesel engine were conducted with several kinds of diesel oil and a heavy fuel oil, to know the characteristics of particulate emissions at the present situation. The effects of engine load and sulfur content of the fuel on the particulate emission have been examined. The particulate emission from the test engine was measured by partial-flow dilution tunnel system, and particulate matter collected on the filter was divided into four components, SOF (soluble organic fraction), sulfate, bound water and dry soot, by Soxlet extraction and ion chromatograph. Results show that the particulate emission from the test engine operated with heavy fuel oil is three times as much as the value with diesel oil and that not only sulfate but SOF and dry soot concentration increase with the increase in fuel sulfur content. It is also found that the conversion rate from sulfur in fuel into sulfate in particulate matter is nearly independent of the sulfur content in the fuel and increases with the increase in the engine load.


Author(s):  
Hyoung-Keun Park ◽  
Sang-Hak Ghal ◽  
Tae-Hyung Park ◽  
Yong-Hee Ahn ◽  
Sung-Hyeok Kim

Straight vegetable oil (SVO) fuels such as palm oil, animal fat oil and waste vegetable oil were tested as fuels in a single-cylinder diesel engine to evaluate applicability to medium-speed diesel engines. Fuel-related properties of the SVO were assessed and compared with conventional marine diesel fuel oil (MDO). The total acid number (TAN) of the SVO fuels changed during a short interval in a drying oven which heated the SVO fuels to 170 degrees Celsius for several weeks. The SVO have not gone rancid any further after reaching limit. And the TAN of the SVO fuels was not related to corrosion of the parts. The SVO fuels needed to be heated to an appropriate temperature to use as fuel of the engine since the SVO fuels are more viscous than conventional diesel fuels. Both the injection period and the injection pressure increased due to low heating values of the SVO fuels. By the same token, fuel oil consumption increased over 10%. The overall exhaust emissions were lower with the SVO fuels, but NOx emission was as much as MDO at the higher loads.


Fuel ◽  
2014 ◽  
Vol 115 ◽  
pp. 145-153 ◽  
Author(s):  
Nikolaos Stamoudis ◽  
Christos Chryssakis ◽  
Lambros Kaiktsis

2020 ◽  
Vol 5 (4(73)) ◽  
pp. 30-34
Author(s):  
A.G. Taranin

The Diesel Engines (ICE) exhaust gas atmosphere noxious emissions reducing measures were introduced by the different editions and engine manufacturer publications already 25 years ago. Many of that have used up to present depend of its installation, usage and maintenance costs. For the mentioned above 25 years of emissions decreasing ways practical using on the vessels has identified it further usage consistency and profitability (efficiency). The atmosphere SОХ noxious emissions proposed decreasing way is directly connected with using fuel oil, i.e. at the fuel oil sulphur content decreasing the SОХ emission has decreasing too, that is task not for ship owners, but for petroleum-refining manufactures and bunkering companies. СО and СО2 emissions decreasing is a corner task, as a fuel oil quality and lower calorific value are identified by the carbon & hydrogen content. Thus the fuel oil carbon and hydrogen content decreasing will bring to the decreasing of a quality and lower calorific value. Therefore all of this 25 years for the vessels diesel engines (ICE) exhaust gases СО & СО2 emissions decreasing the energy efficiency task is stated. Our proposed way can allow to resolve the СО & СО2 emissions decreasing task for the engines operation parts of loads and nominal loads.


2021 ◽  
Vol 2131 (2) ◽  
pp. 022074
Author(s):  
S Andriushchenko ◽  
S Titov ◽  
G Yur

Abstract Currently, environmental specifications of marine diesel engines become more stringent. There are two well-known and popular ways to improve engine environmental performance: the internal method is based on operation process improvement, as well as on the use of various fuel additives or air supply to the diesel cylinder. Another method is external (gas purification using catalysts and filters). The article considers one of these possible ways of reducing nitrogen oxides in marine diesel engines by using a water agent in fuel with various water phase dispersion degrees. The high-speed characteristics of the ship engine operation under various modes using “L” brand diesel fuel and emulsions are given. Studies have shown that when converting diesel from pure fuel to a microheterogenous emulsion (water inclusions’ diameter 5-10 microns), the concentration of NOx decreased by 1.4 times, fuel consumption increased by (4-5) g/(kWh), with an increase in the maximum combustion pressure by 0.7 MPa. The tests have confirmed the effectiveness of using a microheterogenous emulsion to reduce nitrogen oxide emissions.


2016 ◽  
Vol 23 (3) ◽  
pp. 50-57 ◽  
Author(s):  
Jerzy Girtler

Abstract The article analyses the operation of reciprocal internal combustion engines, with marine engines used as an example. The analysis takes into account types of energy conversion in the work spaces (cylinders) of these engines, loads of their crankshaft-piston assemblies, and types of fuel combustion which can take place in these spaces during engine operation. It is highlighted that the analysed time-dependent loads of marine internal combustion engine crankshaft-piston assemblies are random processes. It is also indicated that the wear of elements of those assemblies resulting from their load should also be considered a random process. A hypothesis is formulated which explains random nature of load and the absence of the theoretically expected detonation combustion in engines supplied with such fuels as Diesel Oil, Marine Diesel Oil, and Heavy Fuel Oil. A model is proposed for fuel combustion in an arbitrary work space of a marine Diesel engine, which has the form of a stochastic four-state process, discrete in states and continuous in time. The model is based on the theory of semi-Markov processes.


Author(s):  
Hechun Wang ◽  
Xiannan Li ◽  
Yinyan Wang ◽  
Hailin Li

Marine diesel engines usually operate on a highly boosted intake pressure. The reciprocating feature of diesel engines and the continuous flow operation characteristics of the turbocharger (TC) make the matching between the turbocharger and diesel engine very challenging. Sequential turbocharging (STC) technology is recognized as an effective approach in improving the fuel economy and exhaust emissions especially at low speed and high torque when a single stage turbocharger is not able to boost the intake air to the pressure needed. The application of STC technology also extends engine operation toward a wider range than that using a single-stage turbocharger. This research experimentally investigated the potential of a STC system in improving the performance of a TBD234V12 model marine diesel engine originally designed to operate on a single-stage turbocharger. The STC system examined consisted of a small (S) turbocharger and a large (L) turbocharger which were installed in parallel. Such a system can operate on three boosting modes noted as 1TC-S, 1TC-L and 2TC. A rule-based control algorithm was developed to smoothly switch the STC operation mode using engine speed and load as references. The potential of the STC system in improving the performance of this engine was experimentally examined over a wide range of engine speed and load. When operated at the standard propeller propulsion cycle, the application of the STC system reduced the brake specific fuel consumption (BSFC) by 3.12% averagely. The average of the exhaust temperature before turbine was decreased by 50°C. The soot and oxides of nitrogen (NOx) emissions were reduced respectively. The examination of the engine performance over an entire engine speed and torque range demonstrated the super performance of the STC system in extending the engine operation toward the high torque at low speed (900 to 1200 RPM) while further improving the fuel economy as expected. The engine maximum torque at 900 rpm was increased from 1680Nm to 2361 Nm (40.5%). The average BSFC over entire working area was improved by 7.4%. The BSFC at low load and high torque was significantly decreased. The application of the STC system also decreased the average NOx emissions by 31.5% when examined on the propeller propulsion cycle.


2014 ◽  
Vol 672-674 ◽  
pp. 1562-1567
Author(s):  
Bin Li ◽  
Shou Jun Zhang

Currently shipping costs are increasing sharply due to the rising oil prices. In order to reduce shipping costs, most low-speed two-stroke diesel engines run at low speeds to reduce fuel oil consumption, and this measure might result turbocharger surge. For modern marine diesel engines, the exhaust gas turbochargers are becoming more and more important; their working conditions have a direct impact on the performance of diesel engines, consequently affecting the operation of the ship. Surge will fail a turbocharger to achieve the supercharging ratio, damage the turbocharger components and even lead to a damage accident of the whole turbocharger. Therefore, a good understanding of the reasons for marine diesel engine turbocharger surge will help to prevent and eliminate turbocharger surge in operation. This paper is to make an analysis on the special surge mechanism occurred to the turbocharger on MV "Crystal Star", and propose some appropriate supervisory and preventive measures against the problem.


Sign in / Sign up

Export Citation Format

Share Document