scholarly journals Development of a Nitrogen-enrichment/Humidification Membrane System for NOx Emission Reduction in a Marine Diesel Engine

2013 ◽  
Vol 48 (3) ◽  
pp. 397-402
Author(s):  
Atsushi Shimizu ◽  
Hirokazu Ohno ◽  
Yosuke Koizumi ◽  
Kazuyuki Maeda ◽  
Dai Yamanishi
Author(s):  
Xi Xiao ◽  
Chunmei Xian ◽  
Gongyi He ◽  
Chong Liao ◽  
Chuntao Hu

2000 ◽  
Vol 2000.9 (0) ◽  
pp. 233-236
Author(s):  
Satoru GOTO ◽  
Takahisa MIMURA ◽  
Hiroaki KIMURA

2014 ◽  
Vol 535 ◽  
pp. 149-152
Author(s):  
Hai Qiang Liu ◽  
Lin Lu ◽  
Zhong Jun Wang

For the large marine main propulsion diesel engine, before delivered to shipyards should be evaluated NOx emission. This paper proposed a method just by analyzing the related parameters to evaluate the emission of marine diesel engine. Based on the small bore marine main propulsion diesel engine, analyzed the variation of performance parameters, to evaluate the emission performance at the condition of different power/speed at CMCR point and electric control mode. And the analysis results show that, for the same main propulsion diesel engine, the power of CMCR point has no obvious effect on the NOx emission performance, while the electric mode has a certain effect on the NOx emission performance. Finally, shop testing ware carried out to measure the NOx emission at the above condition, and the testing results approved the analysis results, and the parameter analysis method can be used in the practice.


Author(s):  
B Li ◽  
H T Gao

With the advantages of ultra-low emissions of oxides of nitrogen (NOX) and high thermal efficiency, the homogeneous charge compression ignition (HCCI) mode applied to marine diesel engine is expected to be one of the technical solutions to meet the International Maritime Organization (IMO) MARPOL73/78 Convention-Annex VI Amendment Tier III requirement. According to the NOX chemical reaction mechanism, taking a marine diesel engine as the application object, the numerical study on the NOX formation characteristics of n-heptane for HCCI combustion process is performed. The results indicate that NO is usually the main component in the generation and emissions of NOX with the n-heptane HCCI mode. The combustor temperature plays more important role in the proportion of NO generation and emission. Compared with the experimental data of conventional marine diesel engine, the emission reduction rate of NOX can achieve an average of more than 95% in using HCCI technology.


2013 ◽  
Vol 291-294 ◽  
pp. 1920-1924
Author(s):  
Min Xiao ◽  
Hui Chen

The KIVA-3V program was used to make numerical simulation for L21/31 type of medium-speed marine diesel engine about the NOx emissions and the affection of NOx changing process on different variable parameters under the Tier Ⅱstandard. On this basis, a discussion towards the NOx emission of the model fueling with dimethyl ether (DME) to meet the Tier Ⅲ standard is offered. The results show that reducing the intake temperature, load and speed, postponing the fuel injection timing and intake lag angle properly can decrease the NOx emissions within the limits of NOx in TierⅡ standard. Comparing the results of the numerical simulation of DME and diesel fuel, the NOx emission of the former one is 60.85% of the latter one, and the NOx emission of changing variable parameters on DME engine is 35.56% of the original type of diesel engine, very close to the Tier Ⅲ.


2017 ◽  
Vol Vol 159 (A2) ◽  
Author(s):  
B Li ◽  
H T Gao

With the advantages of ultra-low emissions of oxides of nitrogen (NOX) and high thermal efficiency, the homogeneous charge compression ignition (HCCI) mode applied to marine diesel engine is expected to be one of the technical solutions to meet the International Maritime Organization (IMO) MARPOL73/78 Convention-Annex VI Amendment Tier III requirement. According to the NOX chemical reaction mechanism, taking a marine diesel engine as the application object, the numerical study on the NOX formation characteristics of n-heptane for HCCI combustion process is performed. The results indicate that NO is usually the main component in the generation and emissions of NOX with the n-heptane HCCI mode. The combustor temperature plays more important role in the proportion of NO generation and emission. Compared with the experimental data of conventional marine diesel engine, the emission reduction rate of NOX can achieve an average of more than 95% in using HCCI technology.


2019 ◽  
Vol 26 (1) ◽  
pp. 153-161 ◽  
Author(s):  
Zhiyuan Yang ◽  
Qinming Tan ◽  
Peng Geng

Abstract With the implementation and expansion of international sulfur emission control areas, effectively promoted the marine low sulfur diesel fuel (MLSDF) used in marine diesel engines. In this study, a large low-speed, two-stroke, cross-head, common rail, electronic fuel injection marine diesel engine (B&W 6S35ME-B9) was used for the study. According to diesel engine’s propulsion characteristics, experiments were launched respectively at 25%, 50%, 75%, 100% load working conditions with marine low sulfur diesel fuel to analyze the fuel consumption, combustion characteristics and emissions (NOx, CO2, CO, HC) characteristics. The results showed that: Marine diesel engine usually took fuel injection after top dead center to ensure their safety control NOx emission. From 25% to 75% load working condition, engine’s combustion timing gradually moved forward and the inflection points of pressure curve after top dead center also followed forward. While it is necessary to control pressure and reduce NOx emission by delaying fuel injection timing at 100% load. Engine’s in-cylinder pressure, temperature, and cumulative heat release were increased with load increasing. Engine’s CO2 and HC emissions were significantly reduced from 25% to 75% load, while they were increased slightly at 100% load. Moreover, the fuel consumption rate had a similar variation and the lowest was only 178 g/kW·h at 75% load of the test engine with MLSDF. HC or CO emissions at four tests’ working conditions were below 1.23 g/kW·h and the maximum difference was 0.2 or 0.4 g/kW·h respectively, which meant that combustion efficiency of the test engine with MLSDF is good. Although the proportion of NOx in exhaust gas increased with engine’s load increasing, but NOx emissions were always between 12.5 and 13.0 g/kW·h, which was less than 14.4 g/kW·h. Thus, the test engine had good emissions performance with MLSDF, which could meet current emission requirements of the International Maritime Organization.


Sign in / Sign up

Export Citation Format

Share Document