scholarly journals Can Bibliographic Data be Put Directly onto the Semantic Web?

2009 ◽  
Vol 28 (2) ◽  
pp. 55 ◽  
Author(s):  
Martha M. Yee

<span>This paper is a think piece about the possible future of bibliographic control; it provides a brief introduction to the Semantic Web and defines related terms, and it discusses granularity and structure issues and the lack of standards for the efficient display and indexing of bibliographic data. It is also a report on a work in progress—an experiment in building a Resource Description Framework (RDF) model of more FRBRized cataloging rules than those about to be introduced to the library community (Resource Description and Access) and in creating an RDF data model for the rules. I am now in the process of trying to model my cataloging rules in the form of an RDF model, which can also be inspected at </span><a href="http://myee.bol.ucla.edu/">http://myee.bol.ucla.edu/</a><span>. In the process of doing this, I have discovered a number of areas in which I am not sure that RDF is sophisticated enough yet to deal with our data. This article is an attempt to identify some of those areas and explore whether or not the problems I have encountered are soluble—in other words, whether or not our data might be able to live on the Semantic Web. In this paper, I am focusing on raising the questions about the suitability of RDF to our data that have come up in the course of my work.</span>

2015 ◽  
Vol 18 (1) ◽  
pp. 33-42 ◽  
Author(s):  
Yevgeny Gryaznov ◽  
Pavel Rusakov

Abstract In this paper authors perform a research on possibilities of RDF (Resource Description Framework) syntaxes usage for information representation in Semantic Web. It is described why pure XML cannot be effectively used for this purpose, and how RDF framework solves this problem. Information is being represented in a form of a directed graph. RDF is only an abstract formal model for information representation and side tools are required in order to write down that information. Such tools are RDF syntaxes – concrete text or binary formats, which prescribe rules for RDF data serialization. Text-based RDF syntaxes can be developed on the existing format basis (XML, JSON) or can be an RDF-specific – designed from scratch to serve the only purpose – to serialize RDF graphs. Authors briefly describe some of the RDF syntaxes (both XML and non-XML) and compare them in order to identify strengths and weaknesses of each version. Serialization and deserialization speed tests using Jena library are made. The results from both analytical and experimental parts of this research are used to develop the recommendations for RDF syntaxes usage and to design a RDF/XML syntax subset, which is intended to simplify the development and raise compatibility of information serialized with this RDF syntax.


2008 ◽  
Vol 8 (3) ◽  
pp. 249-269 ◽  
Author(s):  
TIM BERNERS-LEE ◽  
DAN CONNOLLY ◽  
LALANA KAGAL ◽  
YOSI SCHARF ◽  
JIM HENDLER

AbstractThe Semantic Web drives toward the use of the Web for interacting with logically interconnected data. Through knowledge models such as Resource Description Framework (RDF), the Semantic Web provides a unifying representation of richly structured data. Adding logic to the Web implies the use of rules to make inferences, choose courses of action, and answer questions. This logic must be powerful enough to describe complex properties of objects but not so powerful that agents can be tricked by being asked to consider a paradox. The Web has several characteristics that can lead to problems when existing logics are used, in particular, the inconsistencies that inevitably arise due to the openness of the Web, where anyone can assert anything. N3Logic is a logic that allows rules to be expressed in a Web environment. It extends RDF with syntax for nested graphs and quantified variables and with predicates for implication and accessing resources on the Web, and functions including cryptographic, string, math. The main goal of N3Logic is to be a minimal extension to the RDF data model such that the same language can be used for logic and data. In this paper, we describe N3Logic and illustrate through examples why it is an appropriate logic for the Web.


2014 ◽  
Vol 42 (W1) ◽  
pp. W442-W448 ◽  
Author(s):  
Shin Kawano ◽  
Tsutomu Watanabe ◽  
Sohei Mizuguchi ◽  
Norie Araki ◽  
Toshiaki Katayama ◽  
...  

Author(s):  
Sherif Sakr ◽  
Ghazi Al-Naymat

The Resource Description Framework (RDF) is a flexible model for representing information about resources in the Web. With the increasing amount of RDF data which is becoming available, efficient and scalable management of RDF data has become a fundamental challenge to achieve the Semantic Web vision. The RDF model has attracted attentions in the database community and many researchers have proposed different solutions to store and query RDF data efficiently. This chapter focuses on using relational query processors to store and query RDF data. It gives an overview of the different approaches and classifies them according to their storage and query evaluation strategies.


Author(s):  
Franck Cotton ◽  
Daniel Gillman

Linked Open Statistical Metadata (LOSM) is Linked Open Data (LOD) applied to statistical metadata. LOD is a model for identifying, structuring, interlinking, and querying data published directly on the web. It builds on the standards of the semantic web defined by the W3C. LOD uses the Resource Description Framework (RDF), a simple data model expressing content as predicates linking resources between them or with literal properties. The simplicity of the model makes it able to represent any data, including metadata. We define statistical data as data produced through some statistical process or intended for statistical analyses, and statistical metadata as metadata describing statistical data. LOSM promotes discovery and the meaning and structure of statistical data in an automated way. Consequently, it helps with understanding and interpreting data and preventing inadequate or flawed visualizations for statistical data. This enhances statistical literacy and efforts at visualizing statistics.


Author(s):  
Kaleem Razzaq Malik ◽  
Tauqir Ahmad

This chapter will clearly show the need for better mapping techniques for Relational Database (RDB) all the way to Resource Description Framework (RDF). This includes coverage of each data model limitations and benefits for getting better results. Here, each form of data being transform has its own importance in the field of data science. As RDB is well known back end storage for information used to many kinds of applications; especially the web, desktop, remote, embedded, and network-based applications. Whereas, EXtensible Markup Language (XML) in the well-known standard for data for transferring among all computer related resources regardless of their type, shape, place, capability and capacity due to its form is in application understandable form. Finally, semantically enriched and simple of available in Semantic Web is RDF. This comes handy when with the use of linked data to get intelligent inference better and efficient. Multiple Algorithms are built to support this system experiments and proving its true nature of the study.


2016 ◽  
Vol 35 (2) ◽  
pp. 19 ◽  
Author(s):  
Manolis Peponakis

<p>The aim of this study is to contribute to the field of machine-processable bibliographic data that is suitable for the Semantic Web. We examine the Entity Relationship (ER) model, which has been selected by IFLA as a “conceptual framework” in order to model the FR family (FRBR, FRAD and RDA), and the problems ER causes as we move towards the Semantic Web. Subsequently, while maintaining the semantics of the aforementioned standards but rejecting the ER as a conceptual framework for bibliographic data, this paper builds on the Resource Description Framework (RDF) potential and documents how both the RDF and Linked Data’s rationale can affect the way we model bibliographic data.</p>In this way, a new approach to bibliographic data emerges where the distinction between description and authorities is obsolete. Instead, the integration of the authorities with descriptive information becomes fundamental so that a network of correlations can be established between the entities and the names by which the entities are known. Naming is a vital issue for human cultures because names are not random sequences of characters or sounds which stand just as identifiers for the entities - they also have socio-cultural meanings and interpretations. Thus, instead of describing indivisible resources, we could describe entities that appear in a variety of names on various resources. In this study, a method is proposed to connect the names with the entities they represent and, in this way, to document the provenance of these names by connecting specific resources with specific names.


2011 ◽  
Vol 26 (4) ◽  
pp. 445-486 ◽  
Author(s):  
Juan F. Sequeda ◽  
Syed Hamid Tirmizi ◽  
Oscar Corcho ◽  
Daniel P. Miranker

AbstractThe Semantic Web anticipates integrated access to a large number of information sources on the Internet represented as Resource Description Framework (RDF). Given the large number of websites that are backed by SQL databases, methods that automate the translation of those databases to RDF are crucial. One approach, taken by a number of researchers, is to directly map the SQL schema to an equivalent Web Ontology Language (OWL) or RDF Schema representation, which in turn, implies an RDF representation for the relational data. This paper reviews this research, and derives a consolidated, overarching set of translation rules expressible as a stratified Datalog program. We present all the possible key combinations in an SQL schema and consider their implied semantic properties. We review the approaches and characterize them with respect to the scope of their coverage of SQL constructs.


Sign in / Sign up

Export Citation Format

Share Document