scholarly journals Reduced-Scale Compartment Gaseous Fuels Backdraft Experiments

2021 ◽  
Author(s):  
Christopher U. Brown ◽  
Ryan Falkenstein-Smith ◽  
Thomas G. Cleary
Keyword(s):  
Author(s):  
David Littlejohn ◽  
Robert K. Cheng ◽  
D. R. Noble ◽  
Tim Lieuwen

The low-swirl injector (LSI) is a lean premixed combustion technology that has the potential for adaptation to fuel-flexible gas turbines operating on a variety of fuels. The objective of this study is to gain a fundamental understanding of the effect of syngas on the LSI flame behavior, the emissions and the flowfield characteristics for its adaptation to the combustion turbines in IGCC clean coal power plants. The experiments were conducted in two facilities. Open laboratory flames generated by a full size (6.35 cm) LSI were used to investigate the lean-blow off limits, emissions, and the flowfield characteristics. Verification of syngas operation at elevated temperatures and pressures were performed with a reduced scale (2.54 cm) LSI in a small pressurized combustion channel. The results show that the basic LSI design is amenable to burning syngases with up to 60% H2. Syngases with high H2 concentration have lower lean blow-off limits. From PIV measurements, the flowfield similarity behavior and the turbulent flame speeds of syngases flames are consistent with those observed in hydrocarbon and pure or diluted hydrogen flames. The NOx emissions from syngas flames show log-linear dependency on the adiabatic flame temperature and are comparable to those reported for the gaseous fuels reported previously. Successful firing of the reduced-scale LSI at 330 < T < 446° F and 8 atm verified the operability of this concept at gas turbine conditions.


Author(s):  
O. M. Salamov ◽  
F. F. Aliyev

The paper discusses the possibility of obtaining liquid and gaseous fuels from different types of biomass (BM) and combustible solid waste (CSW) of various origins. The available world reserves of traditional types of fuel are analyzed and a number of environmental shortcomings that created during their use are indicated. The tables present the data on the conditional calorific value (CCV) of the main traditional and alternative types of solid, liquid and gaseous fuels which compared with CCV of various types of BM and CSW. Possible methods for utilization of BM and CSW are analyzed, as well as the methods for converting them into alternative types of fuel, especially into combustible gases.Reliable information is given on the available oil and gas reserves in Azerbaijan. As a result of the research, it was revealed that the currently available oil reserves of Azerbaijan can completely dry out after 33.5 years, and gas reserves–after 117 years, without taking into account the growth rates of the exported part of these fuels to European countries. In order to fix this situation, first of all it is necessary to use as much as possible alternative and renewable energy sources, especially wind power plants (WPP) and solar photovoltaic energy sources (SFES) in the energy sector of the republic. Azerbaijan has large reserves of solar and wind energy. In addition, all regions of the country have large reserves of BM, and in the big cities, especially in industrial ones, there are CSW from which through pyrolysis and gasification is possible to obtain a high-quality combustible gas mixture, comprising: H2 + CO + CH4, with the least amount of harmful waste. The remains of the reaction of thermochemical decomposition of BM and CSW to combustible gases can also be used as mineral fertilizers in agriculture. The available and projected resources of Azerbaijan for the BM and the CSW are given, as well as their assumed energy intensity in the energy sector of the republic.Given the high energy intensity of the pyrolysis and gasification of the BM and CSW, at the present time for carrying out these reactions, the high-temperature solar installations with limited power are used as energy sources, and further preference is given to the use of WPP and SFES on industrial scale.


Author(s):  
Felipe Santos de Castro ◽  
Eduardo Tadashi Katsuno ◽  
Andre Mitsuo Kogishi ◽  
José Marcos Paz de Souza ◽  
Joao Lucas Dozzi Dantas Dantas

Author(s):  
Daniel Mazzette Souza ◽  
Wellington Balmant ◽  
JOSÉ VIRIATO COELHO VARGAS ◽  
Fernando Bóçon

Sign in / Sign up

Export Citation Format

Share Document