Structural Analysis for a Reduced Scale Model of a Hydropower Plant Debris Containment Grid

Author(s):  
Felipe Santos de Castro ◽  
Eduardo Tadashi Katsuno ◽  
Andre Mitsuo Kogishi ◽  
José Marcos Paz de Souza ◽  
Joao Lucas Dozzi Dantas Dantas
Author(s):  
Marcio Yamamoto ◽  
Sotaro Masanobu ◽  
Satoru Takano ◽  
Shigeo Kanada ◽  
Tomo Fujiwara ◽  
...  

In this article, we present the numerical analysis of a Free Standing Riser. The numerical simulation was carried out using a commercial riser analysis software suit. The numerical model’s dimensions were the same of a 1/70 reduced scale model deployed in a previous experiment. The numerical results were compared with experimental results presented in a previous article [1]. Discussion about the model and limitations of the numerical analysis is included.


1998 ◽  
Author(s):  
Y. G. Lee ◽  
C. S. Yu ◽  
P. W. Green ◽  
L.-D. Chen ◽  
P. B. Butler
Keyword(s):  

Author(s):  
Helio C. Silva-Junior ◽  
Carlos O. Cardoso ◽  
Marco A. P. Carmignotto ◽  
Jose C. Zanutto

Nowadays, the safe operation of HP-HT subsea pipelines resting on seabed must take into account the thermal buckling phenomenon. The transport of oil with high pressure and temperature can cause uncontrolled thermal buckling in subsea pipelines. The failure risk must be carefully evaluated to design the pipeline with safety. Nowadays to control the thermal buckling the use of man made triggers is seen like the best solution for cost and safety of subsea pipelines. Some projects employ man-made triggers to control the thermal buckling in the last years around the world. In this article is presented the system and methodology used to test some solutions in a reduced scale model. Different geometric setups along the model line were tested. Solutions like sleepers, dual sleepers and buoyancy were tested and the geometric and structural behavior monitored. The reduced model has 195 m length, and was developed in the IPT Towing Tank, representing a pipeline section of almost 6 km long. Strains, temperature, pressure and displacements were measured in several sections of the model. Additionally, an imaging technique for the model geometry retrieval was developed. This paper presents the experimental setup developed to investigate the performance of man-made triggers solutions for HP-HT subsea pipelines.


Author(s):  
Marcio Yamamoto ◽  
Motohiko Murai ◽  
Katsuya Maeda ◽  
Shotaro Uto

Nowadays pipes are widely deployed in the offshore environment especially in the petroleum industry where rigid and flexible pipes are used for well drilling and hydrocarbon production. Whereas during drilling, a mixture of drilling mud, rock cuttings and sometimes gas flows through the drilling riser, during production mono or multiphase (comprising oil, water and gas) flow takes place within the system. However up till now, most of the studies on offshore pipelines and risers have been focused on the pipe structure and its interaction with hydrodynamic forces and offshore platforms. In particular for numerical computation studies and reduced scale model experiments, the pipe is usually modeled as a tensioned beam and sometimes only the internal pressure is taken into account with other effects due to its internal flow being neglected. This paper deals with the interaction between the pipe structure and its internal flow. In order to verify the internal flow effects, an experimental analysis was carried out not using a reduced scale model. In particular, mono-phase fluid flows into the pipe and a parametric analysis using the flow rate was carried out. Discussion about the experimental results and numerical applications is also included.


2019 ◽  
Vol 160 ◽  
pp. 114068 ◽  
Author(s):  
Jiaxu Wang ◽  
Xuefeng Liu ◽  
Siwei Chen ◽  
Hanghang Jiang ◽  
Guanyu Fang ◽  
...  

Author(s):  
Jiancai Gao ◽  
Haixiao Liu

Abstract For reduced-scale model tests of gravity-installed anchors (GIAs), it is of great significance to extrapolate the testing results to prototype. This highlights the necessity of investigation of similarity criteria. The present work aims to find the similarity criteria of three prioritized hydrodynamic characteristics including VT, HP, and Cd for GIAs during installation in water through CFD simulations. In the present study, free falling processes of different reduced-scale T98 anchor models and prototype anchor is simulated, from which VT, HP, and Cd are extracted and analyzed to get the fitting curves for these three characteristics over reduced-scale λ. Based on these curves, hydrodynamic characteristics for prototype and other reduced-scale model can be extrapolated from model testing results. And, the researching procedure in this paper sets an example and reference to study about similarity criteria for other hydrodynamic characteristics.


Sign in / Sign up

Export Citation Format

Share Document