scholarly journals VOLUMETRIC PROPERTIES OF ACRYLONITRILE+ETHANOL MIXTURE OVER TEMPERATURE RANGE FROM (293.15 TO 323.15) K AT AMBIENT PRESSURE

Author(s):  
Heghine H. Ghazoyan

Densities of binary mixture of acrylonitrile in ethanol have been measured over the full range of compositions at temperatures from 293.15K to 323.15 K at the ambient pressure (87.9 kPa). The volumetric properties such as excess molar volumes, apparent molar volumes, partial molar volumes, excess partial molar volumes, standard partial molar volumes for binary mixture were calculated. Excess molar volumes were described by the Redlich–Kister polynomial equation. The Redlich–Kister coefficients and the standard deviations were calculated as well. The excess molar volumes exhibit mainly negative deviations from the ideal behavior over the whole range of composition for acrylonitrile+ethanol binary mixtures at low temperatures and become less negative with increasing temperature from 293.15 to 323.15 K. The results are interpreted on the basis of strong interaction between group of acrylonitrile and OH group of ethanol by hydrogen bonding. However, the sigmoid shape of plots of excess molar volumes versus molar fraction of ethanol from positive to negative values indicates to the varying interactions depending upon the composition of binary mixtures. Moreover, it is also attributed to the self-associating effect of ethanol therefore the self-associates of acrylonitrile by dipole-dipole interactions and the self-associates of ethanol by hydrogen bonding between same molecules at low concentrations predominate too.

1995 ◽  
Vol 73 (9) ◽  
pp. 1514-1519 ◽  
Author(s):  
Yadollah Maham ◽  
Tjoon T. Teng ◽  
Alan E. Mather ◽  
Loren G. Hepler

Densities of completely miscible (water + methyldiethanolamine) and (water + ethyldiethanolamine) systems have been measured over the full range of compositions at temperatures from 25 to 80 °C. Results of these measurements have been used in calculating excess molar volumes and partial molar volumes of each component. We have also identified different measures of the thermal expansion of these systems and have calculated some of these derivative quantities. The partial molar volumes and their derivatives with respect to temperature provide a basis for extending our understanding of molecular interactions in these (water + organic) systems. Keywords: diethanolamines, excess molar volumes, partial molar volumes, expansivities, aqueous solutions.


2013 ◽  
Author(s):  
◽  
Sangeeta Singh

The thermodynamic properties of binary liquid mixtures using an ionic liquid (IL) with alcohols were determined at different temperatures. The ionic liquid used was 1-butyl-3- methylimidazolium methylsulphate [BMIM]+[MeSO4]-. Densities, speed of sound, and refractive indices for the binary mixtures ([BMIM]+[MeSO4]- + methanol, or 1-propanol, or 2-propanol, or 1-butanol) were experimentally measured over the whole range of composition at T = (298.15, E 303.15, 308.15, and 313.15) K. From the experimental data, excess molar volumes, V m , E , deviations in refractive isentropic compressibilities, κ s , excess isentropic compressibilities, κ S indices, ∆n, and molar refractions, R, were calculated. The excess partial molar volumes were also calculated at T = 298.15 K. For the binary systems, ([BMIM]+[MeSO4]- + methanol, or 1-propanol, or 2-propanol, or E E E 1-butanol) V m and κ S are always negative and V m decrease slightly when the temperature increases. The refractive index deviation at T = (298.15, 303.15, 308.15, and 313.15) K is positive over the whole composition range. The measured negative values for excess molar volume of these mixtures ([BMIM]+[MeSO4]- + methanol, or 1-propanol, or 2-propanol, or 1-butanol) indicate strong ion-dipole interactions and packing between alcohols and IL are present. The Redlich-Kister smoothing polynomial equation was satisfactorily applied for the E E fitting of the V m , κ S , and ∆n data to give the fitting parameters and the root-mean-square deviations. The Lorentz-Lorenz (L-L) equation was also used to correlate the volumetric property and predict the density or refractive index of the binary mixtures of ionic liquid and the organic solvents. The Lorentz-Lorenz approximation gives a higher σ when used to correlate the iiiexcess molar volumes for the mixtures ([BMIM]+[MeSO4]- + methanol, or 1-propanol, or 2-propanol, or 1-butanol). The L-L equation gives good results for the prediction of density and refractive index. The results are discussed in terms of solute-solute, solute-solvent and solvent- solvent interactions.


Sign in / Sign up

Export Citation Format

Share Document