scholarly journals Excess molar volumes and partial molar volumes for binary mixtures propanoic acid with 1-propanol, 2-propanol, 1-butanol and 1-pentanol

2020 ◽  
Vol 65 (3) ◽  
pp. 269-275
Author(s):  
Mona GEORGESCU ◽  
◽  
Viorica MELTZER ◽  
Elena PINCU ◽  
◽  
...  
Author(s):  
Heghine H. Ghazoyan

Densities of binary mixture of acrylonitrile in ethanol have been measured over the full range of compositions at temperatures from 293.15K to 323.15 K at the ambient pressure (87.9 kPa). The volumetric properties such as excess molar volumes, apparent molar volumes, partial molar volumes, excess partial molar volumes, standard partial molar volumes for binary mixture were calculated. Excess molar volumes were described by the Redlich–Kister polynomial equation. The Redlich–Kister coefficients and the standard deviations were calculated as well. The excess molar volumes exhibit mainly negative deviations from the ideal behavior over the whole range of composition for acrylonitrile+ethanol binary mixtures at low temperatures and become less negative with increasing temperature from 293.15 to 323.15 K. The results are interpreted on the basis of strong interaction between group of acrylonitrile and OH group of ethanol by hydrogen bonding. However, the sigmoid shape of plots of excess molar volumes versus molar fraction of ethanol from positive to negative values indicates to the varying interactions depending upon the composition of binary mixtures. Moreover, it is also attributed to the self-associating effect of ethanol therefore the self-associates of acrylonitrile by dipole-dipole interactions and the self-associates of ethanol by hydrogen bonding between same molecules at low concentrations predominate too.


2013 ◽  
Author(s):  
◽  
Sangeeta Singh

The thermodynamic properties of binary liquid mixtures using an ionic liquid (IL) with alcohols were determined at different temperatures. The ionic liquid used was 1-butyl-3- methylimidazolium methylsulphate [BMIM]+[MeSO4]-. Densities, speed of sound, and refractive indices for the binary mixtures ([BMIM]+[MeSO4]- + methanol, or 1-propanol, or 2-propanol, or 1-butanol) were experimentally measured over the whole range of composition at T = (298.15, E 303.15, 308.15, and 313.15) K. From the experimental data, excess molar volumes, V m , E , deviations in refractive isentropic compressibilities, κ s , excess isentropic compressibilities, κ S indices, ∆n, and molar refractions, R, were calculated. The excess partial molar volumes were also calculated at T = 298.15 K. For the binary systems, ([BMIM]+[MeSO4]- + methanol, or 1-propanol, or 2-propanol, or E E E 1-butanol) V m and κ S are always negative and V m decrease slightly when the temperature increases. The refractive index deviation at T = (298.15, 303.15, 308.15, and 313.15) K is positive over the whole composition range. The measured negative values for excess molar volume of these mixtures ([BMIM]+[MeSO4]- + methanol, or 1-propanol, or 2-propanol, or 1-butanol) indicate strong ion-dipole interactions and packing between alcohols and IL are present. The Redlich-Kister smoothing polynomial equation was satisfactorily applied for the E E fitting of the V m , κ S , and ∆n data to give the fitting parameters and the root-mean-square deviations. The Lorentz-Lorenz (L-L) equation was also used to correlate the volumetric property and predict the density or refractive index of the binary mixtures of ionic liquid and the organic solvents. The Lorentz-Lorenz approximation gives a higher σ when used to correlate the iiiexcess molar volumes for the mixtures ([BMIM]+[MeSO4]- + methanol, or 1-propanol, or 2-propanol, or 1-butanol). The L-L equation gives good results for the prediction of density and refractive index. The results are discussed in terms of solute-solute, solute-solvent and solvent- solvent interactions.


2009 ◽  
Author(s):  
◽  
Precious N. Sibiya

The thermodynamic properties of binary liquid mixtures involving ionic liquids (ILs) with alcohols were determined. ILs are an important class of solvents since they are being investigated as environmentally benign solvents, because of their negligible vapour pressure, and as potential replacement solvents for volatile organic compounds (VOCs) currently used in industries. Alcohols were chosen for this study because they have hydrogen bonding and their interaction with ILs will help in understanding the intermolecular interactions. Also, their thermodynamic properties are used for the development of specific chemical processes. The excess molar volumes of binary mixtures of {1-ethyl-3-methylimidazolium ethylsulfate + methanol or 1-propanol or 2-propanol}, {trioctylmethylammonium bis (trifluoromethyl-sulfonyl) imide + methanol or ethanol or 1-propanol}, {1-buty-3-methylimidazolium methylsulfate + methanol or ethanol or 1-propanol} were calculated from experimental density values, at T = (298.15, 303.15 and 313.15) K. The Redlich-Kister smoothing polynomial was fitted to the excess molar volume data. The partial molar volumes of the binary mixtures {1-ethyl-3-methylimidazolium ethylsulfate + methanol or 1-propanol or 2-propanol}, {trioctylmethylammonium bis (trifluoromethyl-sulfonyl) imide + methanol or ethanol or 1-propanol}, {1-buty-3-methylimidazolium methylsulfate + methanol or ethanol or 1-propanol} were calculated from the Redlich-Kister coefficients, at T = (298.15, 303.15 and 313.15) K. This information was used to better understand the intermolecular interactions with each solvent at infinite dilution. iii The isentropic compressibility of {trioctylmethylammonium bis (trifluoromethyl-sulfonyl) imide + methanol or ethanol or 1-propanol}, were calculated from the speed of sound data at T = 298.15 K.


2013 ◽  
Vol 78 (9) ◽  
pp. 1443-1460 ◽  
Author(s):  
Biswajit Sinha ◽  
Rajendra Pradhan ◽  
Sanjoy Saha ◽  
Dhiraj Brahman ◽  
Abhijit Sarkar

Densities and viscosities of the binary mixtures consisting of tetrahydrofuran (THF), 1,3-dioxolane (1,3-DO) and 1,4-dioxane (1,4-DO) with N,N-dimethylformamide (DMF) over the entire range of composition were measured at temperatures 298.15, 308.15 and 318.15 K and at atmospheric pressure. Ultrasonic speeds of sound of these binary mixtures were measured at ambient temperature and atmospheric pressure (T = 298.15 K and P = 1.01?105 Pa). The various experimental data were utilized to derive excess molar volumes (VmE), excess viscosities (?E), and excess isentropic compressibilities (?sE). Using the excess molar volumes (VmE), excess partial molar volumes (and ) and excess partial molar volumes at infinite dilution (and ) of each liquid component in the mixtures were derived and discussed. Excess molar volumes (VmE) as a function of composition at ambient temperature and atmospheric pressure were used further to test the applicability of the Prigogine-Flory-Patterson (PFP) theory to the experimental binaries. The excess properties were found to be either negative or positive depending on the nature of molecular interactions and structural effects of liquid mixtures. Em,1V Em,2VE0,m,1VE0,m,2V.


1986 ◽  
Vol 31 (2) ◽  
pp. 152-154 ◽  
Author(s):  
Jagjit S. Sandhu ◽  
Ashok K. Sharma ◽  
Ramesh K. Wadi

Sign in / Sign up

Export Citation Format

Share Document