scholarly journals Development of Hydrological Information System in the Chao Phraya River Basin

2001 ◽  
Vol 35 (3) ◽  
pp. 171-175 ◽  
Author(s):  
Yoshio HAYASE ◽  
Kaichi KOSEKI ◽  
Kumjon LAPCHAROEN ◽  
Attaporn BUDDHAPALIT
2010 ◽  
Vol 26 (3) ◽  
pp. 347-353
Author(s):  
Jian-kang SHI ◽  
An-ming BAO ◽  
Hai-long LIU ◽  
Xian-wei FENG ◽  
Wei-sheng WANG ◽  
...  

2018 ◽  
Vol 19 (5) ◽  
pp. 1287-1294 ◽  
Author(s):  
Nuanchan Singkran ◽  
Pitchaya Anantawong ◽  
Naree Intharawichian ◽  
Karika Kunta

Abstract Land use influences and trends in water quality parameters were determined for the Chao Phraya River, Thailand. Dissolved oxygen (DO), biochemical oxygen demand (BOD), and nitrate-nitrogen (NO3-N) showed significant trends (R2 ≥ 0.5) across the year, while total phosphorus (TP) and faecal coliform bacteria (FCB) showed significant trends only in the wet season. DO increased, but BOD, NO3-N, and TP decreased, from the lower section (river kilometres (rkm) 7–58 from the river mouth) through the middle section (rkm 58–143) to the upper section (rkm 143–379) of the river. Lead and mercury showed weak/no trends (R2 < 0.5). Based on the river section, major land use groups were a combination of urban and built-up areas (43%) and aquaculture (21%) in the lower river basin, paddy fields (56%) and urban and built-up areas (21%) in the middle river basin, and paddy fields (44%) and other agricultural areas (34%) in the upper river basin. Most water quality and land use attributes had significantly positive or negative correlations (at P ≤ 0.05) among each other. The river was in crisis because of high FCB concentrations. Serious measures are suggested to manage FCB and relevant human activities in the river basin.


2015 ◽  
Vol 12 (7) ◽  
pp. 6755-6797 ◽  
Author(s):  
S. Zuliziana ◽  
K. Tanuma ◽  
C. Yoshimura ◽  
O. C. Saavedra

Abstract. Soil erosion and sediment transport have been modeled at several spatial and temporal scales, yet few models have been reported for large river basins (e.g., drainage areas > 100 000 km2). In this study, we propose a process-based distributed model for assessment of sediment transport at a large basin scale. A distributed hydrological model was coupled with a process-based distributed sediment transport model describing soil erosion and sedimentary processes at hillslope units and channels. The model was tested on two large river basins: the Chao Phraya River Basin (drainage area: 160 000 km2) and the Mekong River Basin (795 000 km2). The simulation over 10 years showed good agreement with the observed suspended sediment load in both basins. The average Nash–Sutcliffe efficiency (NSE) and average correlation coefficient (r) between the simulated and observed suspended sediment loads were 0.62 and 0.61, respectively, in the Chao Phraya River Basin except the lowland section. In the Mekong River Basin, the overall average NSE and r were 0.60 and 0.78, respectively. Sensitivity analysis indicated that suspended sediment load is sensitive to detachability by raindrop (k) in the Chao Phraya River Basin and to soil detachability over land (Kf) in the Mekong River Basin. Overall, the results suggest that the present model can be used to understand and simulate erosion and sediment transport in large river basins.


1994 ◽  
Vol 7 (6) ◽  
pp. 520-528 ◽  
Author(s):  
Wataru SHINTANI ◽  
Kuniyoshi TAKEUCHI ◽  
Vanchai SIVAARTHITKUL

Author(s):  
Nguyen Ba Dung ◽  
Dang Tuyet Minh ◽  
Nguyen Quoc Long ◽  
Le Thi Thu Ha

There are many factors that influence the formation and development of floods, such as rainfall, soil, slope, land cover, drainage, and density. Therefore, a quantitative assessment of their importance is necessary, especially in the determination of flood risk zones, using the Analytic Hierarchy Process algorithm and Geographic Information System. In comparison with other methodologies, an obvious advantage of Analytic Hierarchy Process is the ability to solve multi-variable qualitative and quantitative problems with precise and trustworthy results. This paper presents the application of the Analytic Hierarchy Process algorithm in analyzing and evaluating the level at which various criteria affect flood risk in the Lam River basin. Some of the flood-causative factors considered in this paper are annual rainfall, soil, slope, land cover, drainage density, and relative slope length. These factors were chosen based on the physical conditions of the study area. The research results are the weight of different criteria. The higher the weight, the higher the effect of that criterion on flood risk. The computed weights show that annual rainfall and slope are the factors that contribute the most to flooding, based on decision-makers’ judgement. The results of this article can be used to construct a flood risk zoning map and flood susceptibility map for flood warnings in the Lam River basin, using the Analytic Hierarchy Process method and Geographic Information System technology. New research shows that Analytic Hierarchy Process can be trustworthy when assessing the level of influence of the different factors on determining flood-prone areas in the Lam River basin, as well as other basins.


Sign in / Sign up

Export Citation Format

Share Document