scholarly journals Development of a Small Jet Engine Performance Test Device by Applying the Real-time Gas Turbine Engine Simulator

2014 ◽  
Vol 18 (6) ◽  
pp. 42-49
Author(s):  
Seonghee Kho ◽  
Changduk Kong ◽  
Jayoung Ki
Author(s):  
Changduk Kong ◽  
Semyeong Lim ◽  
Seonghwan Oh ◽  
Jihyun Kim

The gas turbine engine performance is greatly relied on its component performance characteristics. Generally, acquisition of component maps is not easy for engine purchasers because it is an intellectual property of gas turbine engine supplier. In the previous work, the maps were inversely generated from engine performance deck data. However this method is limited to obtain the realistic maps from the calculated performance deck data. Present work proposes a novel method to generate more realistic component maps from experimental performance test data. In order to demonstrate the proposed method, firstly the NI data acquisition device with the proposed LabVIEW on-condition monitoring program monitors and collects real-time performance data such as temperature, pressure, thrust, and fuel flow etc. from a micro turbojet engine of the test setup which is specially manufactured for this study. Real-time data obtained from the test results are used for inverse generation of the component maps after processing by some numerical schemes. Realistic component maps can then be generated from those processed data using the proposed extended scaling method at each rotational speed. Verification can be made through comparison between performance analysis results using the performance simulation program including the generated compressor map and on-condition monitoring performance data.


Author(s):  
Peter D. Smout ◽  
Steven C. Cook

The determination of gas turbine engine performance relies heavily on intrusive rakes of pilot tubes and thermocouples for gas path pressure and temperature measurement. For over forty years, Kiel-shrouds mounted on the rake body leading edge have been used as the industry standard to de-sensitise the instrument to variations in flow incidence and velocity. This results in a complex rake design which is expensive to manufacture, susceptible to mechanical damage, and difficult to repair. This paper describes an exercise aimed at radically reducing rake manufacture and repair costs. A novel ’common cavity rake’ (CCR) design is presented where the pressure and/or temperature sensors are housed in a single slot let into the rake leading edge. Aerodynamic calibration data is included to show that the performance of the CCR design under uniform flow conditions and in an imposed total pressure gradient is equivalent to that of a conventional Kiel-shrouded rake.


Author(s):  
V. Pachidis ◽  
P. Pilidis ◽  
I. Li

The performance analysis of modern gas turbine engine systems has led industry to the development of sophisticated gas turbine performance simulation tools and the utilization of skilled operators who must possess the ability to balance environmental, performance and economic requirements. Academic institutions, in their training of potential gas turbine performance engineers have to be able to meet these new challenges, at least at a postgraduate level. This paper describes in detail the “Gas Turbine Performance Simulation” module of the “Thermal Power” MSc course at Cranfield University in the UK, and particularly its practical content. This covers a laboratory test of a small Auxiliary Power Unit (APU) gas turbine engine, the simulation of the ‘clean’ engine performance using a sophisticated gas turbine performance simulation tool, as well as the simulation of the degraded performance of the engine. Through this exercise students are expected to gain a basic understanding of compressor and turbine operation, gain experience in gas turbine engine testing and test data collection and assessment, develop a clear, analytical approach to gas turbine performance simulation issues, improve their technical communication skills and finally gain experience in writing a proper technical report.


Author(s):  
J. D. MacLeod ◽  
B. Drbanski

The Engine Laboratory of the National Research Council of Canada (NRCC), with the assistance of Standard Aero Ltd., has established a program for the evaluation of component deterioration on gas turbine engine performance. As part of this project, a study of the effects of turbine rebuild tolerances on overall engine performance was undertaken. This study investigated the range of performance changes that might be expected for simply disassembling and reassembling the turbine module of a gas turbine engine, and how these changes would influence the results of the component fault implantation program. To evaluate the effects of rebuilding the turbine on the performance of a single spool engine, such as Allison T56 turboprop engine, a series of three rebuilds were carried out. This study was performed in a similar way to a previous NRCC study on the effects of compressor rebuilding. While the compressor rebuild study had found performance changes in the order of 1% on various engine parameters, the effects of rebuilding the turbine have proven to be even more significant. Based on the results of the turbine rebuild study, new methods to improve the assurance of the best possible tolerances during the rebuild process are currently being addressed. This paper describes the project objectives, the experimental installation, and the results of the performance evaluations. Discussed are performance variations due to turbine rebuilds on engine performance characteristics. As the performance changes were significant, a rigorous measurement uncertainty analysis is included.


Sign in / Sign up

Export Citation Format

Share Document