NUMERICAL STUDY ON THE IMPROVEMENT OF TEMPERATURE UNIFORMITY OF A FDM TYPE 3D PRINTING CHAMBER

2021 ◽  
Vol 26 (4) ◽  
pp. 42-47
Author(s):  
S.J. Cho ◽  
W.C. Kim ◽  
S.W. Lee
Author(s):  
Mohammadhossein Amini ◽  
Shing Chang

Metal 3D printing is one of the fastest growing additive manufacturing (AM) technologies in recent years. Despite the improvements and capabilities, reliable metal printing is still not well understood. One of the barriers of industrialization of metal AM is process monitoring and quality assurance of the printed product. These barriers are especially much highlighted in aerospace and medical device manufacturing industries where the high reliability and quality is needed. Selective Laser Melting (SLM) is one of the main metal 3D printing methods where it is known that more than 50 parameters are affecting the quality of the print. However, the current SLM printing process barely utilize a fraction of the collected data during production. Up to this point, no study to the best of our knowledge examines the correlation of factors affecting the quality of the print. After reviewing the current state of the art of process monitoring for metal AM involving SLM, we propose a method to control the process of the print in each layer and prevent the defects using data-driven techniques. A numerical study using simulated numbers is provided to demonstrate how the proposed method can be implemented.


Fluids ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 143
Author(s):  
Carlo Nonino ◽  
Stefano Savino

An in-house finite element method (FEM) procedure is used to carry out a numerical study on the thermal behavior of cross-flow double-layered microchannel heat sinks with an unequal number of microchannels in the two layers. The thermal performance is compared with those yielded by other more conventional flow configurations. It is shown that if properly designed, i.e., with several microchannels in the top layer smaller than that in the bottom layer, cross-flow double-layered microchannel heat sinks can provide an acceptable thermal resistance and a reasonably good temperature uniformity of the heated base with a header design that is much simpler than that required by the counter-flow arrangement.


Author(s):  
Hongtao Li ◽  
Yashan Zhao ◽  
Yunguang Ji ◽  
Shuqi Xue ◽  
Yazhi Liu

Soft Matter ◽  
2016 ◽  
Vol 12 (8) ◽  
pp. 2392-2399 ◽  
Author(s):  
Y. Li ◽  
Y. Liu ◽  
C. Jiang ◽  
S. Li ◽  
G. Liang ◽  
...  

We used a reactor-like spinneret to generate a continuous hollow alginate fiber and investigated the interfacial deformation dynamics.


2007 ◽  
Vol 129 (10) ◽  
pp. 1432-1444 ◽  
Author(s):  
Xiaojin Wei ◽  
Yogendra Joshi ◽  
Michael K. Patterson

One of the promising liquid cooling techniques for microelectronics is attaching a microchannel heat sink to, or directly fabricating microchannels on, the inactive side of the chip. A stacked microchannel heat sink integrates many layers of microchannels and manifold layers into one stack. Compared with single-layered microchannels, stacked microchannels provide larger flow passages, so that for a fixed heat load the required pressure drop is significantly reduced. Better temperature uniformity can be achieved by arranging counterflow in adjacent microchannel layers. The dedicated manifolds help to distribute coolant uniformly to microchannels. In the present work, a stacked microchannel heat sink is fabricated using silicon micromachining techniques. Thermal performance of the stacked microchannel heat sink is characterized through experimental measurements and numerical simulations. Effects of coolant flow direction, flow rate allocation among layers, and nonuniform heating are studied. Wall temperature profiles are measured using an array of nine platinum thin-film resistive temperature detectors deposited simultaneously with thin-film platinum heaters on the backside of the stacked structure. Excellent overall cooling performance (0.09°C∕Wcm2) for the stacked microchannel heat sink has been shown in the experiments. It has also been identified that over the tested flow rate range, counterflow arrangement provides better temperature uniformity, while parallel flow has the best performance in reducing the peak temperature. Conjugate heat transfer effects for stacked microchannels for different flow conditions are investigated through numerical simulations. Based on the results, some general design guidelines for stacked microchannel heat sinks are provided.


2021 ◽  
Author(s):  
Lingxiu Dong ◽  
Duo Shi ◽  
Fuqiang Zhang

3D printing, as a production technology, differs from conventional technologies in three characteristics: design freedom—that is, it can handle certain product designs that conventional technologies cannot; quality distinction—that is, depending on the focal quality dimension, it can lead to a quality level superior or inferior to that of conventional technologies; and natural flexibility—that is, it is endowed with capacity flexibility without sacrificing operational efficiency. This paper investigates the joint impact of these characteristics when a firm selects conceptual designs to form its product assortment, taking into account the production-technology choices available for each design: 3D printing and two conventional technologies (dedicated and traditional flexible). Some designs can be processed by using any technology (generic), whereas others are specific to 3D printing (3D-specific). The firm selects designs to be handled by each technology and then invests accordingly in technology adoption, product development, capacity, and production. We characterize the structure of the optimal assortment based on the popularity of each design. Within the sets of generic designs and 3D-specific designs, respectively, the most popular designs should be included in the assortment; under a mild condition, the optimal assortment comprises the most popular ones among all the designs. Within the optimal assortment, 3D printing should handle the less popular generic designs than conventional technologies. We further demonstrate that the design freedom or improved quality associated with 3D printing may reduce the firm’s optimal product variety. In the absence of design freedom and quality distinction, natural flexibility by itself always enhances product variety; by contrast, traditional flexible technology may reduce product variety. Numerical study shows that 3D printing tends to be more valuable when popularities of the generic designs are distributed more evenly and when popularities of the 3D-specific designs are distributed less evenly. This paper was accepted by Vishal Gaur, operations management.


Sign in / Sign up

Export Citation Format

Share Document