scholarly journals Characterisation and applications of $\Bbbk$-split bimodules

2019 ◽  
Vol 124 (2) ◽  
pp. 161-178
Author(s):  
Volodymyr Mazorchuk ◽  
Vanessa Miemietz ◽  
Xiaoting Zhang

We describe the structure of bimodules (over finite dimensional algebras) which have the property that the functor of tensoring with such a bimodule sends any module to a projective module. The main result is that all such bimodules are $\Bbbk $-split in the sense that they factor (inside the tensor category of bimodules) over $\Bbbk $-vector spaces. As one application, we show that any simple $2$-category has a faithful $2$-representation inside the $2$-category of $\Bbbk $-split bimodules. As another application, we classify simple transitive $2$-representations of the $2$-category of projective bimodules over the algebra $\Bbbk [x,y]/(x^2,y^2,xy)$.

Author(s):  
Ehud Hrushovski ◽  
François Loeser

This chapter introduces the concept of stable completion and provides a concrete representation of unit vector Mathematical Double-Struck Capital A superscript n in terms of spaces of semi-lattices, with particular emphasis on the frontier between the definable and the topological categories. It begins by constructing a topological embedding of unit vector Mathematical Double-Struck Capital A superscript n into the inverse limit of a system of spaces of semi-lattices L(Hsubscript d) endowed with the linear topology, where Hsubscript d are finite-dimensional vector spaces. The description is extended to the projective setting. The linear topology is then related to the one induced by the finite level morphism L(Hsubscript d). The chapter also considers the condition that if a definable set in L(Hsubscript d) is an intersection of relatively compact sets, then it is itself relatively compact.


Filomat ◽  
2017 ◽  
Vol 31 (16) ◽  
pp. 5111-5116
Author(s):  
Davood Ayaseha

We study the locally convex cones which have finite dimension. We introduce the Euclidean convex quasiuniform structure on a finite dimensional cone. In special case of finite dimensional locally convex topological vector spaces, the symmetric topology induced by the Euclidean convex quasiuniform structure reduces to the known concept of Euclidean topology. We prove that the dual of a finite dimensional cone endowed with the Euclidean convex quasiuniform structure is identical with it?s algebraic dual.


2020 ◽  
pp. 1-14
Author(s):  
NICOLÁS ANDRUSKIEWITSCH ◽  
DIRCEU BAGIO ◽  
SARADIA DELLA FLORA ◽  
DAIANA FLÔRES

Abstract We present new examples of finite-dimensional Nichols algebras over fields of characteristic 2 from braided vector spaces that are not of diagonal type, admit realizations as Yetter–Drinfeld modules over finite abelian groups, and are analogous to Nichols algebras of finite Gelfand–Kirillov dimension in characteristic 0. New finite-dimensional pointed Hopf algebras over fields of characteristic 2 are obtained by bosonization with group algebras of suitable finite abelian groups.


Author(s):  
W. T. Gowers ◽  
L. Milićević

Abstract Let $G_1, \ldots , G_k$ be finite-dimensional vector spaces over a prime field $\mathbb {F}_p$ . A multilinear variety of codimension at most $d$ is a subset of $G_1 \times \cdots \times G_k$ defined as the zero set of $d$ forms, each of which is multilinear on some subset of the coordinates. A map $\phi$ defined on a multilinear variety $B$ is multilinear if for each coordinate $c$ and all choices of $x_i \in G_i$ , $i\not =c$ , the restriction map $y \mapsto \phi (x_1, \ldots , x_{c-1}, y, x_{c+1}, \ldots , x_k)$ is linear where defined. In this note, we show that a multilinear map defined on a multilinear variety of codimension at most $d$ coincides on a multilinear variety of codimension $O_{k}(d^{O_{k}(1)})$ with a multilinear map defined on the whole of $G_1\times \cdots \times G_k$ . Additionally, in the case of general finite fields, we deduce similar (but slightly weaker) results.


1982 ◽  
Vol 47 (4) ◽  
pp. 734-738
Author(s):  
Bruce I. Rose

In this note we show that taking a scalar extension of two elementarily equivalent finite-dimensional algebras over the same field preserves elementary equivalence. The general question of whether or not tensor product preserves elementary equivalence was originally raised in [4]. In [3] Feferman relates an example of Ersov which answers the question negatively. Eklof and Olin [7] also provide a counterexample to the general question in the context of two-sorted structures. Thus the result proved below is a partial positive answer to a general question whose status has been resolved negatively. From the viewpoint of applied model theory it seems desirable to find contexts in which positive statements of preservation can be obtained. Our result does have an application; a corollary to it increases our understanding of what it means for two division algebras to be elementarily equivalent.All algebras are finite-dimensional algebras over fields. All algebras contain an identity element, but are not necessarily associative.Recall that the center of a not necessarily associative algebra A is the set of elements which commute and “associate” with all elements of A. The notion of a scalar extension is an important one in algebra. If A is an algebra over F and G is an extension field of F, then the scalar extension of A by G is the algebra A ⊗F G.


1999 ◽  
Vol 19 (3) ◽  
pp. 559-569
Author(s):  
D. BENARDETE ◽  
S. G. DANI

Given a Lie group $G$ and a lattice $\Gamma$ in $G$, a one-parameter subgroup $\phi$ of $G$ is said to be rigid if for any other one-parameter subgroup $\psi$, the flows induced by $\phi$ and $\psi$ on $\Gamma\backslash G$ (by right translations) are topologically orbit-equivalent only if they are affinely orbit-equivalent. It was previously known that if $G$ is a simply connected solvable Lie group such that all the eigenvalues of $\mathrm{Ad} (g) $, $g\in G$, are real, then all one-parameter subgroups of $G$ are rigid for any lattice in $G$. Here we consider a complementary case, in which the eigenvalues of $\mathrm{Ad} (g)$, $g\in G$, form the unit circle of complex numbers.Let $G$ be the semidirect product $N \rtimes M$, where $M$ and $N$ are finite-dimensional real vector spaces and where the action of $M$ on the normal subgroup $N$ is such that the center of $G$ is a lattice in $M$. We prove that there is a generic class of abelian lattices $\Gamma$ in $G$ such that any semisimple one-parameter subgroup $\phi$ (namely $\phi$ such that $\mathrm{Ad} (\phi_t)$ is diagonalizable over the complex numbers for all $t$) is rigid for $\Gamma$ (see Theorem 1.4). We also show that, on the other hand, there are fairly high-dimensional spaces of abelian lattices for which some semisimple $\phi$ are not rigid (see Corollary 4.3); further, there are non-rigid semisimple $\phi$ for which the induced flow is ergodic.


2021 ◽  
Vol 28 (01) ◽  
pp. 87-90
Author(s):  
Óscar Guajardo Garza ◽  
Marina Rasskazova ◽  
Liudmila Sabinina

We study the variety of binary Lie algebras defined by the identities [Formula: see text], where [Formula: see text] denotes the Jacobian of [Formula: see text], [Formula: see text], [Formula: see text]. Building on previous work by Carrillo, Rasskazova, Sabinina and Grishkov, in the present article it is shown that the Levi and Malcev theorems hold for this variety of algebras.


2021 ◽  
Vol 28 (01) ◽  
pp. 143-154
Author(s):  
Yiyu Li ◽  
Ming Lu

For any positive integer [Formula: see text], we clearly describe all finite-dimensional algebras [Formula: see text] such that the upper triangular matrix algebras [Formula: see text] are piecewise hereditary. Consequently, we describe all finite-dimensional algebras [Formula: see text] such that their derived categories of [Formula: see text]-complexes are triangulated equivalent to derived categories of hereditary abelian categories, and we describe the tensor algebras [Formula: see text] for which their singularity categories are triangulated orbit categories of the derived categories of hereditary abelian categories.


Sign in / Sign up

Export Citation Format

Share Document