scholarly journals The Born rule as a statistics of quantum micro-events

Author(s):  
Yurii V. Brezhnev

We deduce the Born rule from a purely statistical take on quantum theory within minimalistic math-setup. No use is required of quantum postulates. One exploits only rudimentary quantum mathematics—a linear, not Hilbert’, vector space—and empirical notion of the Statistical Length of a state. Its statistical nature comes from the lab micro-events (detector-clicks) being formalized into the C -coefficients of quantum superpositions. We also comment that not only has the use not been made of quantum axioms (scalar-product, operators, interpretations , etc.), but that the involving thereof would be, in a sense, inconsistent when deriving the rule. In point of fact, the quadratic character of the statistical length, and even not (the ‘physics’ of) Born’s formula, represents a first step in constructing the mathematical structure we name the Hilbert space of quantum states.

2000 ◽  
Vol 87 (2) ◽  
pp. 200
Author(s):  
Frédérique Watbled

Let $X$ be a Banach space compatible with its antidual $\overline{X^*}$, where $\overline{X^*}$ stands for the vector space $X^*$ where the multiplication by a scalar is replaced by the multiplication $\lambda \odot x^* = \overline{\lambda} x^*$. Let $H$ be a Hilbert space intermediate between $X$ and $\overline{X^*}$ with a scalar product compatible with the duality $(X,X^*)$, and such that $X \cap \overline{X^*}$ is dense in $H$. Let $F$ denote the closure of $X \cap \overline{X^*}$ in $\overline{X^*}$ and suppose $X \cap \overline{X^*}$ is dense in $X$. Let $K$ denote the natural map which sends $H$ into the dual of $X \cap F$ and for every Banach space $A$ which contains $X \cap F$ densely let $A'$ be the realization of the dual space of $A$ inside the dual of $X \cap F$. We show that if $\vert \langle K^{-1}a, K^{-1}b \rangle_H \vert \leq \parallel a \parallel_{X'} \parallel b \parallel_{F'}$ whenever $a$ and $b$ are both in $X' \cap F'$ then $(X, \overline{X^*})_{\frac12} = H$ with equality of norms. In particular this equality holds true if $X$ embeds in $H$ or $H$ embeds densely in $X$. As other particular cases we mention spaces $X$ with a $1$-unconditional basis and Köthe function spaces on $\Omega$ intermediate between $L^1(\Omega)$ and $L^\infty(\Omega)$.


2021 ◽  
Author(s):  
Steven Duplij ◽  
Raimund Vogl

We propose a concept of quantum computing which incorporates an additional kind of uncertainty, i.e. vagueness (fuzziness), in a natural way by introducing new entities, obscure qudits (e.g. obscure qubits), which are characterized simultaneously by a quantum probability and by a membership function. To achieve this, a membership amplitude for quantum states is introduced alongside the quantum amplitude. The Born rule is used for the quantum probability only, while the membership function can be computed from the membership amplitudes according to a chosen model. Two different versions of this approach are given here: the “product” obscure qubit, where the resulting amplitude is a product of the quantum amplitude and the membership amplitude, and the “Kronecker” obscure qubit, where quantum and vagueness computations are to be performed independently (i.e. quantum computation alongside truth evaluation). The latter is called a double obscure-quantum computation. In this case, the measurement becomes mixed in the quantum and obscure amplitudes, while the density matrix is not idempotent. The obscure-quantum gates act not in the tensor product of spaces, but in the direct product of quantum Hilbert space and so called membership space which are of different natures and properties. The concept of double (obscure-quantum) entanglement is introduced, and vector and scalar concurrences are proposed, with some examples being given.


2016 ◽  
Vol 14 (06) ◽  
pp. 1640026
Author(s):  
T. R. Govindarajan

Quantum theory as formulated in conventional framework using statevectors in Hilbert spaces misses the statistical nature of the underlying quantum physics. Formulation using operators [Formula: see text] algebra and density matrices appropriately captures this feature in addition leading to the correct formulation of particle identity. In this framework, Hilbert space is an emergent concept. Problems related to anomalies and quantum epistemology are discussed.


Nature ◽  
2021 ◽  
Author(s):  
Marc-Olivier Renou ◽  
David Trillo ◽  
Mirjam Weilenmann ◽  
Thinh P. Le ◽  
Armin Tavakoli ◽  
...  

AbstractAlthough complex numbers are essential in mathematics, they are not needed to describe physical experiments, as those are expressed in terms of probabilities, hence real numbers. Physics, however, aims to explain, rather than describe, experiments through theories. Although most theories of physics are based on real numbers, quantum theory was the first to be formulated in terms of operators acting on complex Hilbert spaces1,2. This has puzzled countless physicists, including the fathers of the theory, for whom a real version of quantum theory, in terms of real operators, seemed much more natural3. In fact, previous studies have shown that such a ‘real quantum theory’ can reproduce the outcomes of any multipartite experiment, as long as the parts share arbitrary real quantum states4. Here we investigate whether complex numbers are actually needed in the quantum formalism. We show this to be case by proving that real and complex Hilbert-space formulations of quantum theory make different predictions in network scenarios comprising independent states and measurements. This allows us to devise a Bell-like experiment, the successful realization of which would disprove real quantum theory, in the same way as standard Bell experiments disproved local physics.


Author(s):  
Lina Jansson

Richard Healey’s pragmatist approach to quantum theory promises a middle road between realism and anti-realism. However, in order to capture quantum theory’s explanatory power the pragmatist approach gives up a putative truism about explanation. Namely, that explanation demands accurate representation of the target system. This threatens to undermine our ability to distinguish explanations from nonexplanations in an objective way. Chapter 8 develops a criterion internal to explanation that puts a systematic restriction on the explanatory roles of non-representational (or not adequately representing) explanatory resources. It shows that this allows the pragmatist approach to keep the realist commitment to objective explanation even while weakening the typical realist commitment to the putative truism about explanation. However, the chapter also argues that this way of tackling the problem does not allow us to have a middle road without some explanatory sacrifices. Quantum states and the Born rule can be part of explanations but no longer the explanatory initial input.


Author(s):  
Richard Healey

We can use quantum theory to explain an enormous variety of phenomena by showing why they were to be expected and what they depend on. These explanations of probabilistic phenomena involve applications of the Born rule: to accept quantum theory is to let relevant Born probabilities guide one’s credences about presently inaccessible events. We use quantum theory to explain a probabilistic phenomenon by showing how its probabilities follow from a correct application of the Born rule, thereby exhibiting the phenomenon’s dependence on the quantum state to be assigned in circumstances of that type. This is not a causal explanation since a probabilistic phenomenon is not constituted by events that may manifest it: but each of those events does depend causally on events that actually occur in those circumstances. Born probabilities are objective and sui generis, but not all Born probabilities are chances.


Author(s):  
Richard Healey

Quantum entanglement is popularly believed to give rise to spooky action at a distance of a kind that Einstein decisively rejected. Indeed, important recent experiments on systems assigned entangled states have been claimed to refute Einstein by exhibiting such spooky action. After reviewing two considerations in favor of this view I argue that quantum theory can be used to explain puzzling correlations correctly predicted by assignment of entangled quantum states with no such instantaneous action at a distance. We owe both considerations in favor of the view to arguments of John Bell. I present simplified forms of these arguments as well as a game that provides insight into the situation. The argument I give in response turns on a prescriptive view of quantum states that differs both from Dirac’s (as stated in Chapter 2) and Einstein’s.


Author(s):  
Frank S. Levin

The subject of Chapter 8 is the fundamental principles of quantum theory, the abstract extension of quantum mechanics. Two of the entities explored are kets and operators, with kets being representations of quantum states as well as a source of wave functions. The quantum box and quantum spin kets are specified, as are the quantum numbers that identify them. Operators are introduced and defined in part as the symbolic representations of observable quantities such as position, momentum and quantum spin. Eigenvalues and eigenkets are defined and discussed, with the former identified as the possible outcomes of a measurement. Bras, the counterpart to kets, are introduced as the means of forming probability amplitudes from kets. Products of operators are examined, as is their role underpinning Heisenberg’s Uncertainty Principle. A variety of symbol manipulations are presented. How measurements are believed to collapse linear superpositions to one term of the sum is explored.


1970 ◽  
Vol 25 (5) ◽  
pp. 575-586
Author(s):  
H. Stumpf

Functional quantum theory of free Fermi fields is treated for the special case of a free Dirac field. All other cases run on the same pattern. Starting with the Schwinger functionals of the free Dirac field, functional equations and corresponding many particle functionals can be derived. To establish a functional quantum theory, a physical interpretation of the functionals is required. It is provided by a mapping of the physical Hilbert space into an appropriate functional Hilbert space, which is introduced here. Mathematical details, especially the problems connected with anticommuting functional sources are treated in the appendices.


Sign in / Sign up

Export Citation Format

Share Document