scholarly journals A characterization of convex hypersurfaces in Hadamard manifolds

2005 ◽  
Vol 97 (1) ◽  
pp. 40
Author(s):  
Mehmet Erdogan ◽  
Gülsen Yilmaz

The aim of this paper is to give a characterization of strictly convex hypersurfaces in a Hadamard manifold.

2001 ◽  
Vol 12 (08) ◽  
pp. 877-890 ◽  
Author(s):  
A. SUKHOV ◽  
A. TUMANOV

We give a construction of stationary discs and the indicatrix for manifolds of higher codimension which is a partial analog of L. Lempert's theory of stationary discs for strictly convex hypersurfaces. This leads to new invariants of the CR structure in higher codimension linked with the contact structure of the conormal bundle.


Author(s):  
Alina Stancu

Abstract We study a curvature flow on smooth, closed, strictly convex hypersurfaces in $\mathbb{R}^n$, which commutes with the action of $SL(n)$. The flow shrinks the initial hypersurface to a point that, if rescaled to enclose a domain of constant volume, is a smooth, closed, strictly convex hypersurface in $\mathbb{R}^n$ with centro-affine curvature proportional, but not always equal, to the centro-affine curvature of a fixed hypersurface. We outline some consequences of this result for the geometry of convex bodies and the logarithmic Minkowski inequality.


2002 ◽  
Vol 13 (06) ◽  
pp. 557-578
Author(s):  
DINCER GULER ◽  
FANGYANG ZHENG

In this article, we prove that the maximum rank r of the Ricci tensor of a Cartan–Hadamard manifold Mn satisfies the inequality 2r - 1 ≥ n - s, where n is the dimension and s is the core number, which measures the flatness of Mn. Examples show that this lower bound is sharp.


2016 ◽  
Vol 9 (2) ◽  
Author(s):  
Ilkka Holopainen

AbstractWe construct, by modifying Borbély's example, a 3-dimensional Cartan–Hadamard manifold


Author(s):  
Shanze Gao ◽  
Haizhong Li ◽  
Xianfeng Wang

Abstract In this paper, we investigate closed strictly convex hypersurfaces in ℝ n + 1 {\mathbb{R}^{n+1}} which shrink self-similarly under a large family of fully nonlinear curvature flows by high powers of curvature. When the speed function is given by powers of a homogeneous of degree 1 and inverse concave function of the principal curvatures with power greater than 1, we prove that the only such hypersurfaces are round spheres. We also prove that slices are the only closed strictly convex self-similar solutions to such curvature flows in the hemisphere 𝕊 + n + 1 {\mathbb{S}^{n+1}_{+}} with power greater than or equal to 1.


2019 ◽  
Vol 9 (2) ◽  
pp. 357-366 ◽  
Author(s):  
Mohammad Dilshad

Abstract We consider a Yosida inclusion problem in the setting of Hadamard manifolds. We study Korpelevich-type algorithm for computing the approximate solution of Yosida inclusion problem. The resolvent and Yosida approximation operator of a monotone vector field and their properties are used to prove that the sequence generated by the proposed algorithm converges to the solution of Yosida inclusion problem. An application to our problem and algorithm is presented to solve variational inequalities in Hadamard manifolds.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Muhammad Aslam Noor ◽  
Khalida Inayat Noor

An explicit iterative method for solving the variational inequalities on Hadamard manifold is suggested and analyzed using the auxiliary principle technique. The convergence of this new method requires only the partially relaxed strongly monotonicity, which is a weaker condition than monotonicity. Results can be viewed as refinement and improvement of previously known results.


1989 ◽  
Vol 12 (2) ◽  
pp. 201-204
Author(s):  
Sizwe Mabizela
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document