scholarly journals $C^*$-algebras arising from Dyck systems of topological Markov chains

2011 ◽  
Vol 109 (1) ◽  
pp. 31 ◽  
Author(s):  
Kengo Matsumoto

Let $A$ be an $N \times N$ irreducible matrix with entries in $\{0,1\}$. We define the topological Markov Dyck shift $D_A$ to be a nonsofic subshift consisting of bi-infinite sequences of the $2N$ brackets $(_1,\dots,(_N,)_1,\dots,)_N$ with both standard bracket rule and Markov chain rule coming from $A$. It is regarded as a subshift defined by the canonical generators $S_1^*,\dots, S_N^*, S_1,\dots, S_N$ of the Cuntz-Krieger algebra $\mathcal{O}_A$. We construct an irreducible $\lambda$-graph system $\mathcal{L}^{{\mathrm{Ch}}(D_A)}$ that presents the subshift $D_A$ so that we have an associated simple purely infinite $C^*$-algebra $\mathcal{O}_{\mathcal{L}^{{\mathrm{Ch}}(D_A)}}$. We prove that $\mathcal{O}_{\mathcal{L}^{{\mathrm{Ch}}(D_A)}}$ is a universal unique $C^*$-algebra subject to some operator relations among $2N$ generating partial isometries.

2008 ◽  
Vol 19 (01) ◽  
pp. 47-70 ◽  
Author(s):  
TOKE MEIER CARLSEN

By using C*-correspondences and Cuntz–Pimsner algebras, we associate to every subshift (also called a shift space) 𝖷 a C*-algebra [Formula: see text], which is a generalization of the Cuntz–Krieger algebras. We show that [Formula: see text] is the universal C*-algebra generated by partial isometries satisfying relations given by 𝖷. We also show that [Formula: see text] is a one-sided conjugacy invariant of 𝖷.


2005 ◽  
Vol 97 (1) ◽  
pp. 73 ◽  
Author(s):  
Kengo Matsumoto

A $\lambda$-graph system is a labeled Bratteli diagram with shift transformation. It is a generalization of finite labeled graphs and presents a subshift. In [16] the author has introduced a $C^*$-algebra $\mathcal{O}_{\mathfrak{L}}$ associated with a $\lambda$-graph system $\mathfrak{L}$ by using groupoid method as a generalization of the Cuntz-Krieger algebras. In this paper, we concretely construct the $C^*$-algebra $\mathcal{O}_{\mathfrak{L}}$ by using both creation operators and projections on a sub Fock Hilbert space associated with $\mathfrak{L}$. We also introduce a new irreducible condition on $\mathfrak{L}$ under which the $C^*$-algebra $\mathcal{O}_{\mathfrak{L}}$ becomes simple and purely infinite.


2004 ◽  
Vol 15 (04) ◽  
pp. 313-339 ◽  
Author(s):  
KENGO MATSUMOTO

A λ-graph system is a labeled Bratteli diagram with shift transformation. It is a generalization of finite labeled graphs and presents a subshift. In [Doc. Math. 7 (2002), 1–30], the author introduced a C*-algebra [Formula: see text] associated with a λ-graph system [Formula: see text] as a generalization of the Cuntz–Krieger algebras. In this paper, we study a functorial property between factor maps of λ-graph systems and inclusions of the associated C*-algebras with gauge actions. We prove that if there exists a surjective left-covering λ-graph system homomorphism [Formula: see text], there exists a unital embedding of the C*-algebra [Formula: see text] into the C*-algebra [Formula: see text] compatible to its gauge actions. We also show that a sequence of left-covering graph homomorphisms of finite labeled graphs gives rise to a λ-graph system such that the associated C*-algebra is an inductive limit of the Cuntz–Krieger algebras for the finite labeled graphs.


Author(s):  
J. B. Conway ◽  
J. Duncan ◽  
A. L. T. Paterson

SynopsisBy using the Halmos-Wallen description of power partial isometries on Hilbert space, we give a complete description of all monogenic inverse semigroups,ℐ. We also describe the full C*-algebra C*ℐ and the reduced C*-algebra C*(ℐ) with particular emphasis on the case of the free monogenic inverse semigroupℑℐt.


1990 ◽  
Vol 27 (03) ◽  
pp. 545-556 ◽  
Author(s):  
S. Kalpazidou

The asymptotic behaviour of the sequence (𝒞 n (ω), wc,n (ω)/n), is studied where 𝒞 n (ω) is the class of all cycles c occurring along the trajectory ωof a recurrent strictly stationary Markov chain (ξ n ) until time n and wc,n (ω) is the number of occurrences of the cycle c until time n. The previous sequence of sample weighted classes converges almost surely to a class of directed weighted cycles (𝒞∞, ω c ) which represents uniquely the chain (ξ n ) as a circuit chain, and ω c is given a probabilistic interpretation.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nikolaos Halidias

Abstract In this note we study the probability and the mean time for absorption for discrete time Markov chains. In particular, we are interested in estimating the mean time for absorption when absorption is not certain and connect it with some other known results. Computing a suitable probability generating function, we are able to estimate the mean time for absorption when absorption is not certain giving some applications concerning the random walk. Furthermore, we investigate the probability for a Markov chain to reach a set A before reach B generalizing this result for a sequence of sets A 1 , A 2 , … , A k {A_{1},A_{2},\dots,A_{k}} .


2021 ◽  
Author(s):  
Andrea Marin ◽  
Carla Piazza ◽  
Sabina Rossi

AbstractIn this paper, we deal with the lumpability approach to cope with the state space explosion problem inherent to the computation of the stationary performance indices of large stochastic models. The lumpability method is based on a state aggregation technique and applies to Markov chains exhibiting some structural regularity. Moreover, it allows one to efficiently compute the exact values of the stationary performance indices when the model is actually lumpable. The notion of quasi-lumpability is based on the idea that a Markov chain can be altered by relatively small perturbations of the transition rates in such a way that the new resulting Markov chain is lumpable. In this case, only upper and lower bounds on the performance indices can be derived. Here, we introduce a novel notion of quasi-lumpability, named proportional lumpability, which extends the original definition of lumpability but, differently from the general definition of quasi-lumpability, it allows one to derive exact stationary performance indices for the original process. We then introduce the notion of proportional bisimilarity for the terms of the performance process algebra PEPA. Proportional bisimilarity induces a proportional lumpability on the underlying continuous-time Markov chains. Finally, we prove some compositionality results and show the applicability of our theory through examples.


1986 ◽  
Vol 29 (1) ◽  
pp. 97-100 ◽  
Author(s):  
R. J. Archbold ◽  
Alexander Kumjian

A C*-algebra A is said to be approximately finite dimensional (AF) if it is the inductive limit of a sequence of finite dimensional C*-algebras(see [2], [5]). It is said to be nuclear if, for each C*-algebra B, there is a unique C*-norm on the *-algebraic tensor product A ⊗B [11]. Since finite dimensional C*-algebras are nuclear, and inductive limits of nuclear C*-algebras are nuclear [16];,every AF C*-algebra is nuclear. The family of nuclear C*-algebras is a large and well-behaved class (see [12]). The AF C*-algebras for a particularly tractable sub-class which has been completely classified in terms of the invariant K0 [7], [5].


1997 ◽  
Vol 08 (03) ◽  
pp. 357-374 ◽  
Author(s):  
Kengo Matsumoto

We construct and study C*-algebras associated with subshifts in symbolic dynamics as a generalization of Cuntz–Krieger algebras for topological Markov shifts. We prove some universal properties for the C*-algebras and give a criterion for them to be simple and purely infinite. We also present an example of a C*-algebra coming from a subshift which is not conjugate to a Markov shift.


2004 ◽  
Vol 2004 (8) ◽  
pp. 421-429 ◽  
Author(s):  
Souad Assoudou ◽  
Belkheir Essebbar

This note is concerned with Bayesian estimation of the transition probabilities of a binary Markov chain observed from heterogeneous individuals. The model is founded on the Jeffreys' prior which allows for transition probabilities to be correlated. The Bayesian estimator is approximated by means of Monte Carlo Markov chain (MCMC) techniques. The performance of the Bayesian estimates is illustrated by analyzing a small simulated data set.


Sign in / Sign up

Export Citation Format

Share Document