scholarly journals Optogenetic control of mesenchymal cell fate towards precise bone regeneration

Theranostics ◽  
2019 ◽  
Vol 9 (26) ◽  
pp. 8196-8205 ◽  
Author(s):  
Weicai Wang ◽  
Delan Huang ◽  
Jianhan Ren ◽  
Runze Li ◽  
Zhicai Feng ◽  
...  
2020 ◽  
Vol 6 (17) ◽  
pp. eaaz7822 ◽  
Author(s):  
Chung-Sung Lee ◽  
Soyon Kim ◽  
Jiabing Fan ◽  
Hee Sook Hwang ◽  
Tara Aghaloo ◽  
...  

Biomaterial delivery of bioactive agents and manipulation of stem cell fate are an attractive approach to promote tissue regeneration. Here, smoothened agonist sterosome is developed using small-molecule activators [20S-hydroxycholesterol (OHC) and purmorphamine (PUR)] of the smoothened protein in the hedgehog pathway as carrier and cargo. Sterosome presents inherent osteoinductive property even without drug loading. Sterosome is covalently immobilized onto three-dimensional scaffolds via a bioinspired polydopamine intermediate to fabricate a hybrid scaffold for bone regeneration. Sterosome-immobilized hybrid scaffold not only provides a favorable substrate for cell adhesion and proliferation but also delivers bioactive agents in a sustained and spatially targeted manner. Furthermore, this scaffold significantly improves osteogenic differentiation of bone marrow stem cells through OHC/PUR-mediated synergistic activation of the hedgehog pathway and also enhances bone repair in a mouse calvarial defect model. This system serves as a versatile biomaterial platform for many applications, including therapeutic delivery and endogenous regenerative medicine.


2018 ◽  
Vol 23 (2) ◽  
pp. 151-153 ◽  
Author(s):  
Mark C. Horowitz ◽  
Steven M. Tommasini
Keyword(s):  

2019 ◽  
Vol 99 (1) ◽  
pp. 69-78 ◽  
Author(s):  
R. Sekiguchi ◽  
D. Martin ◽  
K.M. Yamada ◽  

Branching organs, including the salivary and mammary glands, lung, and kidney, arise as epithelial buds that are morphologically very similar. However, the mesenchyme is known to guide epithelial morphogenesis and to help govern cell fate and eventual organ specificity. We performed single-cell transcriptome analyses of 14,441 cells from embryonic day 12 submandibular and parotid salivary glands to characterize their molecular identities during bud initiation. The mesenchymal cells were considerably more heterogeneous by clustering analysis than the epithelial cells. Nonetheless, distinct clusters were evident among even the epithelial cells, where unique molecular markers separated presumptive bud and duct cells. Mesenchymal cells formed separate, well-defined clusters specific to each gland. Neuronal and muscle cells of the 2 glands in particular showed different markers and localization patterns. Several gland-specific genes were characteristic of different rhombomeres. A muscle cluster was prominent in the parotid, which was not myoepithelial or vascular smooth muscle. Instead, the muscle cluster expressed genes that mediate skeletal muscle differentiation and function. Striated muscle was indeed found later in development surrounding the parotid gland. Distinct spatial localization patterns of neuronal and muscle cells in embryonic stages appear to foreshadow later differences in adult organ function. These findings demonstrate that the establishment of transcriptional identities emerges early in development, primarily in the mesenchyme of developing salivary glands. We present the first comprehensive description of molecular signatures that define specific cellular landmarks for the bud initiation stage, when the neural crest–derived ectomesenchyme predominates in the salivary mesenchyme that immediately surrounds the budding epithelium. We also provide the first transcriptome data for the largely understudied embryonic parotid gland as compared with the submandibular gland, focusing on the mesenchymal cell populations.


2005 ◽  
Vol 25 (24) ◽  
pp. 11089-11101 ◽  
Author(s):  
Brad A. Bryan ◽  
Dianne C. Mitchell ◽  
Lei Zhao ◽  
Wenbin Ma ◽  
Lewis J. Stafford ◽  
...  

ABSTRACT Rho family guanine nucleotide exchange factors (GEFs) regulate diverse cellular processes including cytoskeletal reorganization, cell adhesion, and differentiation via activation of the Rho GTPases. However, no studies have yet implicated Rho-GEFs as molecular regulators of the mesenchymal cell fate decisions which occur during development and repair of tissue damage. In this study, we demonstrate that the steady-state protein level of the Rho-specific GEF GEFT is modulated during skeletal muscle regeneration and that gene transfer of GEFT into cardiotoxin-injured mouse tibialis anterior muscle exerts a powerful promotion of skeletal muscle regeneration in vivo. In order to molecularly characterize this regenerative effect, we extrapolate the mechanism of action by examining the consequence of GEFT expression in multipotent cell lines capable of differentiating into a number of cell types, including muscle and adipocyte lineages. Our data demonstrate that endogenous GEFT is transcriptionally upregulated during myogenic differentiation and downregulated during adipogenic differentiation. Exogenous expression of GEFT promotes myogenesis of C2C12 cells via activation of RhoA, Rac1, and Cdc42 and their downstream effector proteins, while a dominant-negative mutant of GEFT inhibits this process. Moreover, we show that GEFT inhibits insulin-induced adipogenesis in 3T3L1 preadipocytes. In summary, we provide the first evidence that the Rho family signaling pathways act as potential regulators of skeletal muscle regeneration and provide the first reported molecular mechanism illustrating how a mammalian Rho family GEF controls this process by modulating mesenchymal cell fate decisions.


Development ◽  
2008 ◽  
Vol 135 (17) ◽  
pp. 2845-2854 ◽  
Author(s):  
P. Leucht ◽  
J.-B. Kim ◽  
R. Amasha ◽  
A. W. James ◽  
S. Girod ◽  
...  

Development ◽  
2021 ◽  
Vol 148 (11) ◽  
Author(s):  
Sara E. Billings ◽  
Nina M. Myers ◽  
Lee Quiruz ◽  
Alan G. Cheng

ABSTRACT During embryonic development, the otic epithelium and surrounding periotic mesenchymal cells originate from distinct lineages and coordinate to form the mammalian cochlea. Epithelial sensory precursors within the cochlear duct first undergo terminal mitosis before differentiating into sensory and non-sensory cells. In parallel, periotic mesenchymal cells differentiate to shape the lateral wall, modiolus and pericochlear spaces. Previously, Wnt activation was shown to promote proliferation and differentiation of both otic epithelial and mesenchymal cells. Here, we fate-mapped Wnt-responsive epithelial and mesenchymal cells in mice and found that Wnt activation resulted in opposing cell fates. In the post-mitotic cochlear epithelium, Wnt activation via β-catenin stabilization induced clusters of proliferative cells that dedifferentiated and lost epithelial characteristics. In contrast, Wnt-activated periotic mesenchyme formed ectopic pericochlear spaces and cell clusters showing a loss of mesenchymal and gain of epithelial features. Finally, clonal analyses via multi-colored fate-mapping showed that Wnt-activated epithelial cells proliferated and formed clonal colonies, whereas Wnt-activated mesenchymal cells assembled as aggregates of mitotically quiescent cells. Together, we show that Wnt activation drives transition between epithelial and mesenchymal states in a cell type-dependent manner.


2018 ◽  
Vol 10 (45) ◽  
pp. 38780-38790 ◽  
Author(s):  
Min Suk Lee ◽  
Dong Hyun Lee ◽  
Jin Jeon ◽  
Se Heang Oh ◽  
Hee Seok Yang
Keyword(s):  

Author(s):  
Jeffrey C. Horowitz ◽  
Priya Kulasekaran ◽  
Justin Mih ◽  
Thomas H. Sisson ◽  
Daniel J. Tschumperlin

Sign in / Sign up

Export Citation Format

Share Document