scholarly journals Neutrophils infiltrate into the spiral ligament but not the stria vascularis in the cochlea during lipopolysaccharide-induced inflammation

Theranostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 2522-2533
Author(s):  
Seong Hoon Bae ◽  
Jee Eun Yoo ◽  
Young Ho Choe ◽  
Sang Hyun Kwak ◽  
Jae Young Choi ◽  
...  
1986 ◽  
Vol 95 (3) ◽  
pp. 309-312 ◽  
Author(s):  
Kensuke Watanabe

Capillaries entering and leaving the stria vascularis were surrounded by layers of basal cells and fibrocytes. The entering capillaries were surrounded by one or two thin basal cells, while the leaving capillaries were surrounded by four or five thicker and interdigitated basal cell layers. Moreover, the layers surrounding the leaving capillaries persisted further into the spiral ligament. Two kinds of filaments were observed in the basal cells, one thin and the other thick. Capillaries were observed to leak horseradish peroxidase before they entered and after they left the stria vascularis. Although the reaction product of horseradish peroxidase was observed in all perivascular spaces of leaving capillaries, very little or no reaction product was observed around some entering capillaries. It is speculated that the layers of basal cells and fibrocytes around entering and leaving capillaries control the vascular flow out of the stria vascularis, although the layers around leaving capillaries may be more contractile than those around entering capillaries.


2020 ◽  
Vol 319 (3) ◽  
pp. C569-C578
Author(s):  
Bei Chen ◽  
Hongen Xu ◽  
Yanfang Mi ◽  
Wei Jiang ◽  
Dan Guo ◽  
...  

Mutations in connexin 30 (Cx30) are known to cause severe congenital hearing impairment; however, the mechanism by which Cx30 mediates homeostasis of endocochlear gap junctions is unclear. We used a gene deletion mouse model to explore the mechanisms of Cx30 in preventing hearing loss. Our results suggest that despite severe loss of the auditory brain-stem response and endocochlear potential at postnatal day 18, Cx30−/− mice only show sporadic loss of the outer hair cells. This inconsistency in the time course and severity of hearing and hair cell losses in Cx30−/− mice might be explained, in part, by an increase in reactive oxygen species generation beginning at postnatal day 10. The expression of oxidative stress genes was increased in Cx30−/− mice in the stria vascularis, spiral ligament, and organ of Corti. Furthermore, Cx30 deficiency caused mitochondrial dysfunction at postnatal day 18, as assessed by decreased ATP levels and decreased expression of mitochondrial complex I proteins, especially in the stria vascularis. Proteomic analysis further identified 444 proteins that were dysregulated in Cx30−/− mice, including several that are involved in mitochondria electron transport, ATP synthesis, or ion transport. Additionally, proapoptotic proteins, including Bax, Bad, and caspase-3, were upregulated at postnatal day 18, providing a molecular basis to explain the loss of hearing that occurs before hair cell loss. Therefore, our results are consistent with an environment of oxidative stress and mitochondrial damage in the cochlea of Cx30−/− mice that is coincident with hearing loss but precedes hair cell loss.


2003 ◽  
Vol 51 (7) ◽  
pp. 903-912 ◽  
Author(s):  
Toshihiro Suzuki ◽  
Tetsuro Takamatsu ◽  
Masahito Oyamada

To elucidate whether the two different gap junction proteins connexin43 (Cx43) and connexin26 (Cx26) are expressed and localized in a similar manner in the adult rat cochlea, we performed three-dimensional confocal microscopy using cryosections and surface preparations. In the cochlear lateral wall, Cx43-positive spots were localized mainly in the stria vascularis and only a few spots were present in the spiral ligament, whereas Cx26-positive spots were detected in both the stria vascularis and the spiral ligament. In the spiral limbus, Cx43 was widely distributed, whereas Cx26 was more concentrated on the side facing the scala vestibuli and in the basal portion. In the organ of Corti, Cx43-positive spots were present between the supporting cells but they were fewer and much smaller than those of Cx26. These data demonstrated distinct differences between Cx43 and Cx26 in expression and localization in the cochlea. In addition, the area of overlap of zonula occludens-1 (ZO-1) immunolabeling with Cx43-positive spots was small, whereas it was fairly large with Cx26-positive spots in the cochlear lateral wall, suggesting that the differences are not associated with the structural difference between carboxyl terminals, i.e., those of Cx43 possess sequences for binding to ZO-1, whereas those of Cx26 lack these binding sequences.


1954 ◽  
Vol 64 (8) ◽  
pp. 656-665 ◽  
Author(s):  
Francis L. Weille ◽  
Daniel E. Martinez ◽  
Samuel R. Gargano ◽  
John W. Irwin ◽  
Mary Gilchrist ◽  
...  

1954 ◽  
Vol 59 (6) ◽  
pp. 731-738 ◽  
Author(s):  
F. L. WEILLE ◽  
S. R. GARGANO ◽  
R. PFISTER ◽  
D. MARTINEZ ◽  
J. W. IRWIN

Sign in / Sign up

Export Citation Format

Share Document