scholarly journals kasT Gene of Streptomyces kasugaensis M338-M1 Encodes a DNA-binding Protein which Binds to Intergenic Region of kasU-kasJ in the Kasugamycin Biosynthesis Gene Cluster.

2002 ◽  
Vol 55 (12) ◽  
pp. 1053-1062 ◽  
Author(s):  
SOUICHI IKENO ◽  
DAISUKE AOKI ◽  
KOJI SATO ◽  
MASA HAMADA ◽  
MAKOTO HORI ◽  
...  
2017 ◽  
Vol 114 (24) ◽  
pp. E4822-E4831 ◽  
Author(s):  
Simon Schäper ◽  
Wieland Steinchen ◽  
Elizaveta Krol ◽  
Florian Altegoer ◽  
Dorota Skotnicka ◽  
...  

Cyclic dimeric GMP (c-di-GMP) has emerged as a key regulatory player in the transition between planktonic and sedentary biofilm-associated bacterial lifestyles. It controls a multitude of processes including production of extracellular polysaccharides (EPSs). The PilZ domain, consisting of an N-terminal “RxxxR” motif and a β-barrel domain, represents a prototype c-di-GMP receptor. We identified a class of c-di-GMP–responsive proteins, represented by the AraC-like transcription factor CuxR in plant symbiotic α-proteobacteria. In Sinorhizobium meliloti, CuxR stimulates transcription of an EPS biosynthesis gene cluster at elevated c-di-GMP levels. CuxR consists of a Cupin domain, a helical hairpin, and bipartite helix-turn-helix motif. Although unrelated in sequence, the mode of c-di-GMP binding to CuxR is highly reminiscent to that of PilZ domains. c-di-GMP interacts with a conserved N-terminal RxxxR motif and the Cupin domain, thereby promoting CuxR dimerization and DNA binding. We unravel structure and mechanism of a previously unrecognized c-di-GMP–responsive transcription factor and provide insights into the molecular evolution of c-di-GMP binding to proteins.


2011 ◽  
Vol 4 (1) ◽  
pp. 53-58 ◽  
Author(s):  
K. Ehrlich ◽  
B. Mack ◽  
J. Cary ◽  
D. Bhatnagar ◽  
S. Kale

Biosynthesis of mycotoxins involves transcriptional co-regulation of sets of clustered genes. We hypothesise that specific control of transcription of genes in these clusters by LaeA, a global regulator of secondary metabolite production and development in many filamentous fungi, results from its interaction with a Cys6Zn2 DNA-binding protein unique to the gene cluster.


2010 ◽  
Vol 222 (03) ◽  
Author(s):  
S Degen ◽  
S Kuhfittig-Kulle ◽  
JH Schulte ◽  
F Westermann ◽  
A Schramm ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document