A hypothesis to explain how LaeA specifically regulates certain secondary metabolite biosynthesis gene clusters

2011 ◽  
Vol 4 (1) ◽  
pp. 53-58 ◽  
Author(s):  
K. Ehrlich ◽  
B. Mack ◽  
J. Cary ◽  
D. Bhatnagar ◽  
S. Kale

Biosynthesis of mycotoxins involves transcriptional co-regulation of sets of clustered genes. We hypothesise that specific control of transcription of genes in these clusters by LaeA, a global regulator of secondary metabolite production and development in many filamentous fungi, results from its interaction with a Cys6Zn2 DNA-binding protein unique to the gene cluster.

Author(s):  
Bin Wei ◽  
Ao‐Qi Du ◽  
Zhen‐Yi Zhou ◽  
Cong Lai ◽  
Wen‐Chao Yu ◽  
...  

2011 ◽  
Vol 39 (suppl_2) ◽  
pp. W339-W346 ◽  
Author(s):  
Marnix H. Medema ◽  
Kai Blin ◽  
Peter Cimermancic ◽  
Victor de Jager ◽  
Piotr Zakrzewski ◽  
...  

2010 ◽  
Vol 76 (24) ◽  
pp. 8143-8149 ◽  
Author(s):  
Sebastian Bergmann ◽  
Alexander N. Funk ◽  
Kirstin Scherlach ◽  
Volker Schroeckh ◽  
Ekaterina Shelest ◽  
...  

ABSTRACT Filamentous fungi produce numerous natural products that constitute a consistent source of potential drug leads, yet it seems that the majority of natural products are overlooked since most biosynthesis gene clusters are silent under standard cultivation conditions. Screening secondary metabolite genes of the model fungus Aspergillus nidulans, we noted a silent gene cluster on chromosome II comprising two nonribosomal peptide synthetase (NRPS) genes, inpA and inpB, flanked by a regulatory gene that we named scpR for secondary metabolism cross-pathway regulator. The induced expression of the scpR gene using the promoter of the alcohol dehydrogenase AlcA led to the transcriptional activation of both the endogenous scpR gene and the NRPS genes. Surprisingly, metabolic profiling of the supernatant of mycelia overexpressing scpR revealed the production of the polyketide asperfuranone. Through transcriptome analysis we found that another silent secondary metabolite gene cluster located on chromosome VIII coding for asperfuranone biosynthesis was specifically induced. Quantitative reverse transcription-PCR proved the transcription not only of the corresponding polyketide synthase (PKS) biosynthesis genes, afoE and afoG, but also of their activator, afoA, under alcAp-scpR-inducing conditions. To exclude the possibility that the product of the inp cluster induced the asperfuranone gene cluster, a strain carrying a deletion of the NRPS gene inpB and, in addition, the alcAp-scpR overexpression cassette was generated. In this strain, under inducing conditions, transcripts of the biosynthesis genes of both the NRPS-containing gene cluster inp and the asperfuranone gene cluster except gene inpB were detected. Moreover, the existence of the polyketide product asperfuranone indicates that the transcription factor ScpR controls the expression of the asperfuranone biosynthesis gene cluster. This expression as well as the biosynthesis of asperfuranone was abolished after the deletion of the asperfuranone activator gene afoA, indicating that ScpR binds to the afoA promoter. To the best of our knowledge, this is the first report of regulatory cross talk between two biosynthesis gene clusters located on different chromosomes.


mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Wonyong Kim ◽  
Judith Lichtenzveig ◽  
Robert A. Syme ◽  
Angela H. Williams ◽  
Tobin L. Peever ◽  
...  

ABSTRACT The polyketide-derived secondary metabolite ascochitine is produced by species in the Didymellaceae family, including but not restricted to Ascochyta species pathogens of cool-season food legumes. Ascochitine is structurally similar to the well-known mycotoxin citrinin and exhibits broad-spectrum phytotoxicity and antimicrobial activities. Here, we identified a polyketide synthase (PKS) gene (denoted pksAC) responsible for ascochitine production in the filamentous fungus Ascochyta fabae. Deletion of the pksAC prevented production of ascochitine and its derivative ascochital in A. fabae. The putative ascochitine biosynthesis gene cluster comprises 11 genes that have undergone rearrangement and gain-and-loss events relative to the citrinin biosynthesis gene cluster in Monascus ruber. Interestingly, we also identified pksAC homologs in two recently diverged species, A. lentis and A. lentis var. lathyri, that are sister taxa closely related to ascochitine producers such as A. fabae and A. viciae-villosae. However, nonsense mutations have been independently introduced in coding sequences of the pksAC homologs of A. lentis and A. lentis var. lathyri that resulted in loss of ascochitine production. Despite its reported phytotoxicity, ascochitine was not a pathogenicity factor in A. fabae infection and colonization of faba bean (Vicia faba L.). Ascochitine was mainly produced from mature hyphae at the site of pycnidial formation, suggesting a possible protective role of the compound against other microbial competitors in nature. This report highlights the evolution of gene clusters harnessing the structural diversity of polyketides and a mechanism with the potential to alter secondary metabolite profiles via single nucleotide polymorphisms in closely related fungal species. IMPORTANCE Fungi produce a diverse array of secondary metabolites, many of which are of pharmacological importance whereas many others are noted for mycotoxins, such as aflatoxin and citrinin, that can threaten human and animal health. The polyketide-derived compound ascochitine, which is structurally similar to citrinin mycotoxin, has been considered to be important for pathogenicity of legume-associated Ascochyta species. Here, we identified the ascochitine polyketide synthase (PKS) gene in Ascochyta fabae and its neighboring genes that may be involved in ascochitine biosynthesis. Interestingly, the ascochitine PKS genes in other legume-associated Ascochyta species have been mutated, encoding truncated PKSs. This indicated that point mutations may have contributed to genetic diversity for secondary metabolite production in these fungi. We also demonstrated that ascochitine is not a pathogenicity factor in A. fabae. The antifungal activities and production of ascochitine during sporulation suggested that it may play a role in competition with other saprobic fungi in nature.


2020 ◽  
Vol 71 (5) ◽  
pp. 701 ◽  
Author(s):  
Leanne A. Pearson ◽  
Nicholas D. Crosbie ◽  
Brett A. Neilan

The cyanobacterium Microcystis aeruginosa has been linked to toxic blooms worldwide. In addition to producing hepatotoxic microcystins, many strains are capable of synthesising a variety of biologically active compounds, including protease and phosphatase inhibitors, which may affect aquatic ecosystems and pose a risk to their use. This study explored the distribution, composition and conservation of known secondary metabolite (SM) biosynthesis gene clusters in the genomes of 27 M. aeruginosa strains isolated from six different Köppen–Geiger climates. Our analysis identified gene clusters with significant homology to nine SM biosynthesis gene clusters spanning four different compound classes: non-ribosomal peptides, hybrid polyketide–non-ribosomal peptides, cyanobactins and microviridins. The aeruginosin, microviridin, cyanopeptolin and microcystin biosynthesis gene clusters were the most frequently observed, but hybrid polyketide–non-ribosomal peptide biosynthesis clusters were the most common class overall. Although some biogeographic relationships were observed, taxonomic markers and geography were not reliable indicators of SM biosynthesis cluster distribution, possibly due to previous genetic deletions or horizontal gene transfer events. The only cyanotoxin biosynthesis gene cluster identified in our screening study was the microcystin synthetase (mcy) gene cluster, suggesting that the production of non-microcystin cyanotoxins by this taxon, such as anatoxin-a or paralytic shellfish poison analogues, is either absent or rare.


2021 ◽  
Vol 85 (3) ◽  
pp. 714-721
Author(s):  
Risa Takao ◽  
Katsuyuki Sakai ◽  
Hiroyuki Koshino ◽  
Hiroyuki Osada ◽  
Shunji Takahashi

ABSTRACT Recent advances in genome sequencing have revealed a variety of secondary metabolite biosynthetic gene clusters in actinomycetes. Understanding the biosynthetic mechanism controlling secondary metabolite production is important for utilizing these gene clusters. In this study, we focused on the kinanthraquinone biosynthetic gene cluster, which has not been identified yet in Streptomyces sp. SN-593. Based on chemical structure, 5 type II polyketide synthase gene clusters were listed from the genome sequence of Streptomyces sp. SN-593. Among them, a candidate gene cluster was selected by comparing the gene organization with grincamycin, which is synthesized through an intermediate similar to kinanthraquinone. We initially utilized a BAC library for subcloning the kiq gene cluster, performed heterologous expression in Streptomyces lividans TK23, and identified the production of kinanthraquinone and kinanthraquinone B. We also found that heterologous expression of kiqA, which belongs to the DNA-binding response regulator OmpR family, dramatically enhanced the production of kinanthraquinones.


2019 ◽  
Vol 11 (12) ◽  
pp. 3529-3533
Author(s):  
Pavelas Sazinas ◽  
Morten Lindqvist Hansen ◽  
May Iren Aune ◽  
Marie Højmark Fischer ◽  
Lars Jelsbak

Abstract Many of the soil-dwelling Pseudomonas species are known to produce secondary metabolite compounds, which can have antagonistic activity against other microorganisms, including important plant pathogens. It is thus of importance to isolate new strains of Pseudomonas and discover novel or rare gene clusters encoding bioactive products. In an effort to accomplish this, we have isolated a bioactive Pseudomonas strain DTU12.1 from leaf-covered soil in Denmark. Following genome sequencing with Illumina and Oxford Nanopore technologies, we generated a complete genome sequence with the length of 5,943,629 base pairs. The DTU12.1 strain contained a complete gene cluster for a rare thioquinolobactin siderophore, which was previously described as possessing bioactivity against oomycetes and several fungal species. We placed the DTU12.1 strain within Pseudomonas gessardii subgroup of fluorescent pseudomonads, where it formed a distinct clade with other Pseudomonas strains, most of which also contained a complete thioquinolobactin gene cluster. Only two other Pseudomonas strains were found to contain the gene cluster, though they were present in a different phylogenetic clade and were missing a transcriptional regulator of the whole cluster. We show that having the complete genome sequence and establishing phylogenetic relationships with other strains can enable us to start evaluating the distribution and evolutionary origins of secondary metabolite clusters.


Sign in / Sign up

Export Citation Format

Share Document