scholarly journals Hydrogen in an early magma ocean: Implications for Earth’s core composition

2021 ◽  
Author(s):  
Ali Bouhifd ◽  
Rémi Delon ◽  
Nathalie Bolfan-Casanova ◽  
Geeth Manthilake ◽  
Federica Schiavi ◽  
...  
2020 ◽  
Vol 538 ◽  
pp. 116208
Author(s):  
Christopher J. Davies ◽  
Monica Pozzo ◽  
David Gubbins ◽  
Dario Alfè

2020 ◽  
Vol 117 (16) ◽  
pp. 8743-8749 ◽  
Author(s):  
Rebecca A. Fischer ◽  
Elizabeth Cottrell ◽  
Erik Hauri ◽  
Kanani K. M. Lee ◽  
Marion Le Voyer

Earth’s core is likely the largest reservoir of carbon (C) in the planet, but its C abundance has been poorly constrained because measurements of carbon’s preference for core versus mantle materials at the pressures and temperatures of core formation are lacking. Using metal–silicate partitioning experiments in a laser-heated diamond anvil cell, we show that carbon becomes significantly less siderophile as pressures and temperatures increase to those expected in a deep magma ocean during formation of Earth’s core. Based on a multistage model of core formation, the core likely contains a maximum of 0.09(4) to 0.20(10) wt% C, making carbon a negligible contributor to the core’s composition and density. However, this accounts for ∼80 to 90% of Earth’s overall carbon inventory, which totals 370(150) to 740(370) ppm. The bulk Earth’s carbon/sulfur ratio is best explained by the delivery of most of Earth’s volatiles from carbonaceous chondrite-like precursors.


2016 ◽  
Vol 2 (2) ◽  
pp. e1500802 ◽  
Author(s):  
Tatsuya Sakamaki ◽  
Eiji Ohtani ◽  
Hiroshi Fukui ◽  
Seiji Kamada ◽  
Suguru Takahashi ◽  
...  

Hexagonal close-packed iron (hcp-Fe) is a main component of Earth’s inner core. The difference in density between hcp-Fe and the inner core in the Preliminary Reference Earth Model (PREM) shows a density deficit, which implies an existence of light elements in the core. Sound velocities then provide an important constraint on the amount and kind of light elements in the core. Although seismological observations provide density–sound velocity data of Earth’s core, there are few measurements in controlled laboratory conditions for comparison. We report the compressional sound velocity (VP) of hcp-Fe up to 163 GPa and 3000 K using inelastic x-ray scattering from a laser-heated sample in a diamond anvil cell. We propose a new high-temperature Birch’s law for hcp-Fe, which gives us the VP of pure hcp-Fe up to core conditions. We find that Earth’s inner core has a 4 to 5% smaller density and a 4 to 10% smaller VP than hcp-Fe. Our results demonstrate that components other than Fe in Earth’s core are required to explain Earth’s core density and velocity deficits compared to hcp-Fe. Assuming that the temperature effects on iron alloys are the same as those on hcp-Fe, we narrow down light elements in the inner core in terms of the velocity deficit. Hydrogen is a good candidate; thus, Earth’s core may be a hidden hydrogen reservoir. Silicon and sulfur are also possible candidates and could show good agreement with PREM if we consider the presence of some melt in the inner core, anelasticity, and/or a premelting effect.


2020 ◽  
Vol 47 (14) ◽  
Author(s):  
R. Torchio ◽  
S. Boccato ◽  
F. Miozzi ◽  
A. D. Rosa ◽  
N. Ishimatsu ◽  
...  

2013 ◽  
Vol 373 ◽  
pp. 169-178 ◽  
Author(s):  
G. Morard ◽  
J. Siebert ◽  
D. Andrault ◽  
N. Guignot ◽  
G. Garbarino ◽  
...  

Author(s):  
Nursultan E. Sagatov ◽  
Dinara N. Sagatova ◽  
Pavel N. Gavryushkin ◽  
Konstantin D. Litasov

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Manfred Vogt ◽  
Mario Trieloff ◽  
Ulrich Ott ◽  
Jens Hopp ◽  
Winfried H. Schwarz

AbstractNoble gases are important tracers of planetary accretion and acquisition of volatiles to planetary atmospheres and interiors. Earth’s mantle hosts solar-type helium and neon for which 20Ne/22Ne ratios advocate either incorporation of solar wind irradiated solids or solar nebula gas dissolution into an early magma ocean. However, the exact source location of primordial signatures remains unclear. Here we use high-resolution stepwise heating gas extraction experiments to analyse interior samples of the iron meteorite Washington County and find that they contain striking excesses of solar helium and neon. We infer that the Washington County protolith was irradiated by solar wind and that implanted noble gases were partitioned into segregating metal melts. The corollary that solar signatures are able to enter the cores of differentiated planetesimals and protoplanets validates hypotheses that Earth’s core may have incorporated solar noble gases and may be contributing to the solar signatures observed in Earth’s mantle.


Nature ◽  
2010 ◽  
Author(s):  
Geoff Brumfiel
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document