scholarly journals Strontium and sulphur isotope variations in the Flatreef on Turfspruit and Macalacaskop, northern lobe, Bushveld Complex: Correlation with the Upper Critical Zone – Main Zone transition

2021 ◽  
Author(s):  
Jarlen Keet ◽  
Frederick Roelofse ◽  
Christoph Gauert ◽  
Danie Grobler
1996 ◽  
Vol 60 (398) ◽  
pp. 149-161 ◽  
Author(s):  
Andrew A. Mitchell

AbstractLacking the pronounced modal layering of the underlying Critical Zone, the Main Zone of the Bushveld Complex nevertheless displays well-developed cryptic layering, expressed in a series of iron-enrichment trends, each defining a unit of the order of 100 to 200 m thick. At the base of one such unit, 1100 m above the Main Zone — Critical Zone contact, a 10 m thick pyroxenitic layer was intersected in an exploration borehole from the southern sector of the western Bushveld.Within the pyroxenitic layer, mineral chemistry defines a series of five cycles of upward Mg and Cr enrichment in pyroxenes, and Ca enrichment in plagioclase. The mineral chemistry, supported by textural evidence, suggests the influx of successive surges of magma. Sustained streaming of magma gave rise to adcumulate textures in the central portion of each cycle, with orthocumulate textures at bases and tops of cycles representing waxing and waning stages of magma surges.


2020 ◽  
Vol 61 (3) ◽  
Author(s):  
Roger N Scoon ◽  
Gelu Costin ◽  
Andrew A Mitchell ◽  
Bertrand Moine

Abstract The Platreef Unit is a deceptively complex sequence of layered cumulates located in the northern limb of the 2·055 Ga-old Bushveld Complex. The unit contains the Platreef, a thick, richly mineralized stratabound PGE orebody which differs markedly from the comparatively thin, predominantly stratiform Merensky Reef found in the Upper Critical Zone of the eastern and western limbs. The Platreef Unit is interpreted as a localized facies of the Upper Critical Zone, despite layering being neither as systematic nor as clearly defined as in the equivalent stratigraphy found in the other limbs. The Platreef Unit in the Akanani project area includes well-defined layers of feldspathic harzburgite and norite, in addition to the ubiquitous feldspathic orthopyroxenite–melanorite that characterizes other sections. The paucity of floor-rock xenoliths is an additional feature. The relatively well-developed nature of the layering and paucity of xenoliths in the Platreef Unit at Akanani is explained by separation of the unit from the floor of the intrusion by a thick succession of ultramafics assigned to the Lower Critical Zone. We identify three lithological subgroups in the Platreef Unit at Akanani. They do not define an upward-younging stratigraphy. The primary stratigraphy, or PU1 subunit, is dominated by multiple layers of feldspathic orthopyroxenite, melanorite, and norite. This subunit built up from incremental addition of relatively small magma pulses. Repeated magma replenishment induced concomitant partial melting of earlier-formed layers. The PU1 subunit includes thin chromite stringers that contain Cr-spinels with unusual, amoeboidal textures consistent with several stages of growth and re-equilibration. The feldspathic harzburgite of the younger PU2 subunit was emplaced non-sequentially into the already complexly-layered PU1 subunit as a series of sinuous lenses or syn-intrusive sills. One of the PU2 sills contains the richest and most consistent of the mineralized sections at Akanani, i.e., the Main Mineralized Reef (MMR). The irregularly-developed pegmatoidal lithologies of the PU3 subunit are ascribed to recrystallization of earlier-formed cumulates (PU1 and PU2). Whole rock isotopic data for a section of the Platreef Unit, together with the overlying Lower Main Zone and underlying Lower Critical Zone, mostly from drill-hole ZF-1, demonstrate a complex pattern in both Sr87/Sr86 initial ratios and ϵNd values. These patterns are consistent with multiple lineages of parental magmas. The Lower Main Zone and the majority of the Platreef Unit are characterized by anomalously high Sr initial ratios (with a large degree of scatter) and low ϵNd values (relatively tightly constrained). Harzburgite layers from the Lower Critical Zone have a low Sr initial ratio and a relatively high ϵNd value. The new isotopic data suggest these sequences crystallized from multiple magma batches, broadly constrained within the U-type (ultramafic) and A-type (tholeiitic) lineages, derived from mantle sources and/or staging chambers which experienced varying degrees of crustal contamination. The MMR crystallized from a specific pulse of the U-type magma lineage characterized by a high Sr87/Sr86 initial ratio (average of 0·71113) and a markedly low ϵNd value (average of -11·35). The olivine-saturated magmas associated with the MMR were derived from a localized mantle source and yet underwent an unusually high degree of crustal contamination. Some layered PGE orebodies in the Bushveld Complex, including the Platreef and Merensky Reef, were emplaced as syn-magmatic sills which crystallized from anomalously PGE-rich parental magmas with an unique isotopic fingerprint.


2002 ◽  
Vol 66 (6) ◽  
pp. 857-879 ◽  
Author(s):  
R. N. Scoon ◽  
H. V. Eales

Abstract Spinels associated with discordant bodies of iron-rich ultramafic pegmatite are described from the Amandelbult Platinum mine in the northwestern part of the Bushveld Complex. The spinels are divided into three groups, disseminated Ti-magnetite, disseminated Fe-Ti-Cr spinel and massive Fe-Ti-Cr spinel. The Fe-Ti-Cr spinels show a range of unusual compositions intermediate between chromite and Ti-magnetite. A relationship was found between stratigraphic height and spinel-type, with the Fe-Ti-Cr spinels restricted to pegmatites from the Upper Critical zone and Ti-magnetite to pegmatites from the Lower Main zone. Ilmenite is a ubiquitous component of all of the pegmatites examined here. The massive Fe-Ti-Cr oxide pegmatites are found only where earlier-formed chromitite layers are juxtaposed with sheet-like bodies of olivine-clinopyroxene pegmatite. A distinct thickening of the original chromitite layers in this situation, and compositional gradients within them, points to accretion of Fe-Ti-Cr spinels onto them prior to partial sub-solidus re-equilibration. Analytical data are presented for these spinels and for the Ti-magnetite. The composition of the Fe-Ti-Cr spinels is not duplicated by cumulus spinels in the Bushveld Complex, but the compositions and microtextures of the disseminated Ti-magnetite are very similar to cumulus Ti-magnetite from the Upper zone. Accordingly, it is deduced that the Ti-magnetite in the pegmatites from the Lower Main zone, together with the ilmenite, crystallized at magmatic temperatures from a suitable Fe-Ti-rich silicate-oxide melt. No evidence has been found to link the pegmatites to hydrothermal fluids. The Cr-rich nature of the disseminated spinels in pegmatites from the Upper Critical zone suggests that the pegmatite melt was richer in chromium at this stratigraphic height, although re-equilibration with earlier-formed cumulus chromite also occurred. Formation of the Fe-Ti-Cr oxide pegmatites reflects a complex process that is incompletely understood and why new oxides plate onto pre-existing chromitite layers that are juxtaposed with Fe-rich ultramafic pegmatites is a matter of conjecture.


1986 ◽  
Vol 50 (358) ◽  
pp. 567-582 ◽  
Author(s):  
H. V. Eales ◽  
J. S. Marsh ◽  
A. A. Mitchell ◽  
W. J. de Klerk ◽  
F. J. Kruger ◽  
...  

AbstractRatios between elements Mg, Fe, Co, Cr, Ni, V, and Sc are consistently different in mafic rocks of the upper critical zone, and those above the Bastard unit. Within the 300 m section above the Merensky Reef, 87Sr/86Sr ratios increase from c.0.7063 to c.0.7087, irrespective of rock type. Decoupling of Mg/(Mg + Fe2+) ratios and the Ca contents of plagioclase, and wide variations in the proportions of anorthosite within the Bastard, Merensky, and Merensky Footwall units, are inconsistent with anorthosite formation by simple fractional crystallization of magma batches of limited volume. Conversely, significant differences in Sr-isotope ratios show that these anorthosites could not have shared a common parental liquid. These data are used to develop a model whereby (a) the 300 m column above the critical zone represents the mixing of liquids of isotopically and geochemically discrete upper critical and main zone lineages, (b) mafic layers of the Bastard, Merensky, and Merensky Footwall units crystallized from discrete injections of primitive, mafic liquid while (c) the leucocratic upper parts of these units crystallized during progressive hybridization of liquid residua, which remained after significant separation of mafic phases, with a supernatant column representing the liquid residua of earlier cycles, and (d) the buoyancy of plagioclase, and enlargement of the primary phase volume of plagioclase consequent upon an increase in An/Ab ratio of hybrid liquids, were significant factors in the generation of anorthositic layers.


2015 ◽  
Vol 56 (6) ◽  
pp. 1229-1250 ◽  
Author(s):  
Ilya V. Veksler ◽  
David L. Reid ◽  
Peter Dulski ◽  
Jakob K. Keiding ◽  
Mathias Schannor ◽  
...  

1999 ◽  
Vol 63 (6) ◽  
pp. 911-923 ◽  
Author(s):  
Tom E. McCandless ◽  
Joaquin Ruiz ◽  
B.Ivan Adair ◽  
Claire Freydier

2020 ◽  
Author(s):  
Shenghong Yang ◽  
Wolfgang D. Maier ◽  
Belinda Godel ◽  
Sarah-Jane Barnes ◽  
Eero Hanski ◽  
...  

<p>In-situ trace element analysis of cumulus minerals may provide a clue to the parental magma from which the minerals crystallized. However, this is hampered by effects of the trapped liquid shift (TLS). In the Main Zone (MZ) of the Bushveld Complex, the Ti content in plagioclase grains shows a clear increase from core to rim, whereas most other elements (e.g., rare earth elements (REEs), Zr, Hf, Pb) do not. This is different from the prominent intra-grain variation of all trace elements in silicate minerals in mafic dikes and smaller intrusion, which have a faster cooling rate. We suggest that crystal fractionation of trapped liquid occurred in the MZ of Bushveld and the TLS may have modified the original composition of the cumulus minerals for most trace elements except Ti during slow cooling. Quantitative model calculations suggest that the influence of the TLS depends on the bulk partition coefficient of the element. The effect on highly incompatible elements is clearly more prominent ­­than on moderately incompatible and compatible elements because of different concentration gradients between cores and rims of cumulate minerals. This is supported by the following observations in the MZ of Bushveld: 1) positive correlation between Cr, Ni and Mg# of clinopyroxene and orthopyroxene, 2) negative correlation between moderately incompatible elements (e.g., Mn and Sc in clinopyroxene and orthopyroxene, Sr, Ba, Eu in plagioclase), but 3) poor correlation between highly incompatible elements and Mg# of clinopyroxene and orthopyroxene or An# of plagioclase. Modeling suggests that the extent of the TLS for a trace element is also dependent on the initial fraction of the primary trapped liquid, with strong TLS occurring if the primary trapped liquid fraction is high. This is supported by the positive correlation between highly incompatible trace element abundances in cumulus minerals and whole-rock Zr contents.</p><p>We have calculated the composition of the parental magma of the MZ of the Bushveld Complex. The compatible and moderately incompatible element contents of the calculated parental liquid are generally similar to those of the B3 marginal rocks, but different from the B1 and B2 marginal rocks. For the highly incompatible elements, we suggest that the use of the sample with the lowest whole-rock Zr content and the least degree of TLS is the best approach to obtain the parental magma composition. Based on calculation, we propose that a B3 type liquid is the most likely parental magma to the MZ of the Bushveld Complex.</p>


Sign in / Sign up

Export Citation Format

Share Document