scholarly journals Pre-SVF arthroscopy: A case report of new concept of meniscus and cartilage regeneration using arthroscopy followed by intra-articular injection of adipose-derived stromal vascular fraction

2016 ◽  
Vol 3 (1) ◽  
pp. 2 ◽  
Author(s):  
Nizar Al-Salahat
Reports ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 5
Author(s):  
Sawako Ono ◽  
Takuma Makino ◽  
Hiroyuki Yanai ◽  
Hotaka Kawai ◽  
Kiyofumi Takabatake ◽  
...  

Spindle cell carcinoma (SCSCC) with osteoid and/or cartilage formation in the head and neck is rare; only one case was reported in the tongue. Herein, we report an SCSCC with osteoid and cartilage formation of the tongue developed in an 85-year-old man, and then review the report.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yan Wang ◽  
Min Li ◽  
Pei Li ◽  
Haijun Teng ◽  
Dehong Fan ◽  
...  

Patients with bone and cartilage defects due to infection, tumors, and trauma are quite common. Repairing bone and cartilage defects is thus a major problem for clinicians. Autologous and artificial bone transplantations are associated with many challenges, such as limited materials and immune rejection. Bone and cartilage regeneration has become a popular research topic. Inorganic polyphosphate (polyP) is a widely occurring biopolymer with high-energy phosphoanhydride bonds that exists in organisms from bacteria to mammals. Much data indicate that polyP acts as a regulator of gene expression in bone and cartilage tissues and exerts morphogenetic effects on cells involved in bone and cartilage formation. Exposure of these cells to polyP leads to the increase of cytokines that promote the differentiation of mesenchymal stem cells into osteoblasts, accelerates the osteoblast mineralization process, and inhibits the differentiation of osteoclast precursors to functionally active osteoclasts. PolyP-based materials have been widely reported in in vivo and in vitro studies. This paper reviews the current cellular mechanisms and material applications of polyP in bone and cartilage regeneration.


Author(s):  
Samina Hyder Haq ◽  
Iqraa Haq ◽  
Atheer Ali Alsayah ◽  
Abir Alamro ◽  
Amani AlGhamedi

2017 ◽  
Vol 31 (07) ◽  
pp. 686-697 ◽  
Author(s):  
Aaron Stoker ◽  
Chantelle Bozynski ◽  
Keiichi Kuroki ◽  
Kevin Clarke ◽  
Jed Johnson ◽  
...  

AbstractStromal vascular fraction (SVF) contains a small number of mesenchymal stem cells and has been used as a treatment for osteoarthritis and cartilage injury. Due to limited evidence of successful cartilage regeneration with injected stem cell therapies, there is interest in combining cellular therapies with injectable scaffolding materials to increase intra-articular residence times of stem cells and improve tissue regeneration. However, the safety of intra-articular injection of SVF combined with injectable scaffolds is unestablished. Also, it is unclear if SVF therapy is superior to more easily prepared biologics, such as platelet-rich plasma (PRP). The purpose of this study was to assess the safety of SVF when combined with an injectable poly(L-lactide-co-glycolide) nanofiber scaffold and to provide a comparison of SVF therapy to PRP. A total of 12 Beagles had osteochondral defects created in both medial femoral condyles and 4 dogs each were allocated to treatment groups of SVF (n = 4), SVF plus PLGA scaffolding (n = 4), or leukoreduced PRP (n = 4). One knee in each dog received treatment, and the contralateral knee was sham treated with saline. Dogs were assessed over a 6-month period, and outcome measures included functional, radiographic, biochemical, and histological assessments. PRP treatment resulted in improvements in lameness scores and objective kinetic assessments of function. There were no statistically significant improvements in function, cartilage biochemical composition, or histology for SVF-treated knees. The combination of SVF and the injectable PLGA scaffold had worse outcomes than other groups including sham treatment based upon functional, biochemical, and histological assessments, raising concerns over the safety of this scaffold for intra-articular injection.


2015 ◽  
Vol 15 (11) ◽  
pp. 1541-1552 ◽  
Author(s):  
Michail E Klontzas ◽  
Eustathios I Kenanidis ◽  
Manolis Heliotis ◽  
Eleftherios Tsiridis ◽  
Athanasios Mantalaris

Sign in / Sign up

Export Citation Format

Share Document