scholarly journals Progress and Applications of Polyphosphate in Bone and Cartilage Regeneration

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yan Wang ◽  
Min Li ◽  
Pei Li ◽  
Haijun Teng ◽  
Dehong Fan ◽  
...  

Patients with bone and cartilage defects due to infection, tumors, and trauma are quite common. Repairing bone and cartilage defects is thus a major problem for clinicians. Autologous and artificial bone transplantations are associated with many challenges, such as limited materials and immune rejection. Bone and cartilage regeneration has become a popular research topic. Inorganic polyphosphate (polyP) is a widely occurring biopolymer with high-energy phosphoanhydride bonds that exists in organisms from bacteria to mammals. Much data indicate that polyP acts as a regulator of gene expression in bone and cartilage tissues and exerts morphogenetic effects on cells involved in bone and cartilage formation. Exposure of these cells to polyP leads to the increase of cytokines that promote the differentiation of mesenchymal stem cells into osteoblasts, accelerates the osteoblast mineralization process, and inhibits the differentiation of osteoclast precursors to functionally active osteoclasts. PolyP-based materials have been widely reported in in vivo and in vitro studies. This paper reviews the current cellular mechanisms and material applications of polyP in bone and cartilage regeneration.

2013 ◽  
Vol 815 ◽  
pp. 345-349 ◽  
Author(s):  
Ching Wen Hsu ◽  
Ping Liu ◽  
Song Song Zhu ◽  
Feng Deng ◽  
Bi Zhang

Here we reported a combined technique for articular cartilage repair, consisting of bone arrow mesenchymal stem cells (BMMSCs) and poly (dl-lactide-co-glycolide-b-ethylene glycol-b-dl-lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymers carried with tissue growth factor (TGF-belat1). In the present study, BMMSCs seeded on PLGA-PEG-PLGA with were incubated in vitro, carried or not TGF-belta1, Then the effects of the composite on repair of cartilage defect were evaluated in rabbit knee joints in vivo. Full-thickness cartilage defects (diameter: 5 mm; depth: 3 mm) in the patellar groove were either left empty (n=18), implanted with BMMSCs/PLGA (n=18), TGF-belta1 modified BMMSCs/PLGA-PEG-PLGA. The defect area was examined grossly, histologically at 6, 24 weeks postoperatively. After implantation, the BMMSCs /PLGA-PEG-PLGA with TGF-belta1 group showed successful hyaline-like cartilage regeneration similar to normal cartilage, which was superior to the other groups using gross examination, qualitative and quantitative histology. These findings suggested that a combination of BMMSCs/PLGA-PEG-PLGA carried with tissue growth factor (TGF-belat1) may be an alternative treatment for large osteochondral defects in high loading sites.


2014 ◽  
Author(s):  
Ελευθέριος Μακρής

Ο αρθρικός και ο ινώδης χόνδρος έχουν περιορισμένη ικανότητα αναγέννησης μετά από τραυματικές κακώσεις και παθήσεις των αρθρώσεων. Δεδομένου του κριτικού ρόλου των ιστών αυτών στην προστασία των αρθρικών οστικών δομών και στην εξασφάλιση σταθερών λειτουργικών αρθρώσεων, η ανάπτυξη μεθόδων που προάγουν την αναγέννηση ή / και την επιδιορθώση των ιστών αυτών ειναι εξαιρετικά σημαντική. Η επιστήμη της ανάπτυξης μηχανικών ιστών παρέχει σήμερα εξαιρετικές προοπτικές στη θεραπεία των εκφυλισμένων και παθολογικών χόνδρινων ιστών. Και ενώ μεγάλη πρόοδος έχει επιτευχθεί πρόσφατα ως προς την ανάπτυξη νεοχόνδρινων ιστών με θλιπτικές μηχανικές ιδιότητες ανάλογες των φυσικών ιστών, ωστόσο οι ιδιότητες εφελκυσμού των νεοϊστών ειναι συγκριτικά υποδιαίστερες. Ως εκ τούτου, η ανάγκη ανάπτυξης νέων βελτιωμένων μεθόδων για να δημιουργία λειτουργικών νεοϊστών και την αποτελεσματική αντιμετώπιση των περίπου 46.4 εκατομμυρίων ασθένών που υποφέρουν σήμερα από αρθρίτιδα μόνο στις Ηνωμένες Πολιτείες, καθίσταται ιδιαίτερα επιτακτική.Δεδομένης της προόδου που έχει επιτευχθεί την τελευταία δεκαετία στην ανάπτυξη μηχανικών χόνδρινων ιστών, η παρούσα διδακτορική διατριβή έχει τρεις γενικούς στόχους: 1) τη διερεύνηση νέων μοριακών/βιολογικών μεθόδων αναγέννησης του αρθρικού χόνδρου σε in vitro και in vivo πειραματικά μοντέλα χόνδρινων βλαβών και οστεοαρθρίτιδας, 2) την ανάπτυξη ή/και βελτίωση μεθόδων αναγέννησης νεοχόνδρινών ιστών με ευρεία κλινική εφαρμογή, και 3) την ανάπτυξη μεθόδων βιολογικής και μηχανικής ωρίμανσης των νεοϊστών και μεθόδων ενσωμάτωσης τους με το φυσικό ιστό μετά απο μεταμόσχευση. Για την επίτευξη των στόχων αυτών, η παρούσα διατριβή περιγράφει την διερεύνηση νέων εξωγενών βιολογικών παραγόντων για την ανάπτυξη μηχανικών νεοϊστών με δομική οργάνωση ανάλογης των αντίστοιχων φυσικών ιστών. Αρχικά, μελετήθηκε η χρήση του χαλκού και της υδροξυλυσίνης, δύο σημαντικών μεσολαβητών της φυσιολογικής διαδικασίας ανάπτυξης διασταυρώμενων δέσμών κολλαγόνου, για την ενίσχυση της περιεκτικότητας των διασταυρώμενων δεσμών κολλαγόνου στους μηχανικούς ιστούς. Αναλόγως, σε μια διαφορετική μελέτη διερευνήθηκε η in vitro καλλιέργεια φυσικών μυοσκελετικών ιστών και μηχανικών νεοϊστών σε υποξικό περιβάλλον, με στόχο την ενίσχυση της περιεκτικότητάς τους σε διασταυρώμενους δεσμούς κολλαγόνου, και ως εκ τούτου, τη βελτίωση των λειτουργικών τους ιδιοτήτων. Λαμβάνοντας υπόψη την εκταινώς περιγεγραμένη στη βιβλιογραφία θετική συσχέτιση μεταξύ της περιεκτικότητας διασταυρούμενων δεσμών κολλαγόνου και εφελκυστικών μηχανικών ιδιοτήτων των νεοϊστών, μελετήθηκε μία νέα μέθοδος για την αύξηση αυτών των διασταυρούμενων δεσμών κολλαγόνου βασιζόμενη στην εξωγενή χορήγηση του ενζύμου λυσυλική οξειδάση (LOX) κατά τη καλλιέργεια των νεοϊστών, με απώτερο στόχο την περαιτέρω ενισχυση των λειτουργικών τους ιδιοτήτων.Άλλες μελέτες της παρούσας διατριβής επικεντρώνονται στην ανάπτυξη μεθόδων ενίσχυσης της περιεκτικότητας των μηχανικών ιστών σε κολλαγόνο, που όταν συνδυάζονται με τις τεχνικές ενίσχυσης των διασταυρούμενων δεσμών κολλαγόνου θα μπορούσαν να βελτιώσουν περαιτερώ την μηχανική ωρίμανση των νεοϊστών για την αποτελεσματική αποκατάσταση χόνδρινών ελλειμάτων σε πειραματικά μοντέλα αρθρικών παθήσεων. Ειδικότερα, δύο παράγοντες που είναι γνωστοί ρυθμιστές της ενδοκυτταρικής σηματοδότησης του Ca2+ (η διγοξίνη και η τριφωσφορική αδενοσίνη), εξετάστηκαν ως εναλλακτικές μέθοδοι για τη μηχανική βελτίωση των ιστών μέσω αύξησης της περιεκτικότητάς τους σε κολλαγόνο και σε διασταυρούμενους δεσμούς κολλαγόνου. Επιπλέον, ανάλογες μελέτες επικεντρώθηκαν στην βελτίωση μιας θεραπευτικής αγωγής που περιλαμβάνει το βιοφυσικό παράγοντα χονδροϊτινάση-ABC (C-ABC) και τον βιοχημικό παράγοντα αυξητικό παράγοντα μετασχηματισμού -β1 (ΤGF-β1) με στόχο πάλι την ενισχύση τών λειτουργικών ιδιοτήτων των νεοχόνδρινων ιστών. Μια διαφορετική μελέτη εξέτασε την ικανότητα της εμβιομηχανικής διέγερσης με τη μορφή παθητικής αξονικής θλιπτικής φόρτισης να συμβάλλει σε in vitro ανάπτυξη νεοχόνδρινών ιστών με προδιαγεγραμμένο σχήμα/αρχιτεκτονική. Τέλος, μια πρόσθετη μελέτη διερεύνησε την χρήση χονδροκυττάρων απο την ποδοκνημική άρθρωση για την κατασκευή νεοχόνδρινων μοσχευμάτων προοριζόμενων για την βλάβες της ποδοκνημικής άρθρωσης.Καταλεικτικά, η παρούσα διατριβή διερεύνησε τη δυνατότητα ενσωμάτωσης του νεοχόνδρινου με τον φυσικό ιστό μέσω της εξωγενούς χορήγησης του ενζύμου LOX. Μια αρχική μελέτη διερεύνησε τη δυνατότητα του LOX να προώθηση της ενσωμάτωσης μεταξύ του νεοχόνδρου και του φυσικού αρθρικού χόνδρου σε in vitro περιβάλλον καλλιέργειας των ιστών. Ελπιδοφόρα αποτελέσματα αυτής της μέλετης οδήγησαν σε συνδυασμό του ενζύμου LOX με τους παράγοντες C-ABC και ΤGF-β1 με στόχο την ταυτόχρονη ενίσχυση της ωρίμανσης του νεοχόνδρου και τη ενσωμάτωση του με τον φυσικό αρθρικό χόνδρο. Ειδικότερα, ο συνδυασμός των παραγόντων αυτών εφαρμόστηκε πρώτα σε ένα in vitro μοντέλο ενσωμάτωσης των δύο ιστών, και στη συνέχεια σε ένα πειραματικό ζωικό μοντέλο για τη διερεύνηση της ικανότητας του in νίνο περιβάλλοντος να ενισχύσει περαιτέρω της βιολογική αυτή διεργασία.Σε γενικές γραμμές, η σειρά των μελετών που περιγράφονται στην παρούσα διατριβή αντιπροσωπεύουν πρωτοπόρες και δυνητικώς κλινικά εφαρμόσιμες μοριακές μεθόδους για την ενίσχυση των λειτουργικών ιδιοτήτων ενός μεγάλου φάσματος κολλαγόνων ιστών και νεοϊστών. Συγκεκριμένα, ο χαλκός, η ενδογενής παραγώγη του ενζύμου LOX μέσω της καλλιεργειας των ιστών σε υποξίκό περιβάλλον, και η εξωγενή χορήγηση του LOX βελτιώνουν τις μηχανικές ιδιότητες των μηχανικών ιστών αναδεικνύοντας την ικανότητα στόχευσης της αύξησης των διαστραυρούμενων δεσμών κολλαγόνου για την ανάπτυξη βιομιμητικών και μηχανικά ισχυρών νεοχονδρινών ιστών. Εναλλακτικά, η διγοξίνη, η τριφωσφορική αδενοσίνη, ο C-ABC, ο ΤGF -β1, και η στατική εφαρμογή βάρους αποτελουν αποτελεσματικές μεθόδους για την ενίσχυση του κολλαγόνου και την αυξηση των διαστραυρούμενων δεσμών κολλαγόνου στους νεοϊστούς. Τέλος, η εξωγενής χορήγηση του LOX, μονομερώς ή σε συνδυασμό με τους παράγοντες C-ABC και ΤGF -β1, βρέθηκε να προάγει την in vitro και in vivo ωρίμανση των νεοϊστών και την ενσωμάτωση τους με το φυσικό ιστό, αντανακλώντας την πολλά υπόσχόμενη συνδιαστική χρήση των παραγόντων αυτών για την θεραπευτική αντιμετώπιση χόνδρινων βλαβών in νίνο. Συνολικά, οι μελέτες που περιγράφονται στην παρούσα διατριβή αποτελούν μια επισκόπηση διαφορετικών και πολλά υποσχόμενων νέων τεχνολογιών με στόχο 1) την ενίσχυση των μηχανικών ιδιοτήτων των φυσικών ιστών και νεοϊστών, και 2) την ενίσχυση των δυνατοτήτων τους να ενσωματώνονται in vitro, υπογραμμίζοντας τη δυνατότητα για εφαρμογή των τεχνολογιών αυτών στη ανάπτυξη κλινικά λειτουργικών νεοϊστών για την επιδιόρθωση και / ή αντικατάσταση των ιστών που έχουν καταστραφεί από τραυματισμό ή ασθένεια.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yunsheng Dong ◽  
Yufei Liu ◽  
Yuehua Chen ◽  
Xun Sun ◽  
Lin Zhang ◽  
...  

AbstractHydrogels have been extensively favored as drug and cell carriers for the repair of knee cartilage defects. Recruiting mesenchymal stem cells (MSCs) in situ to the defect region could reduce the risk of contamination during cell delivery, which is a highly promising strategy to enhance cartilage repair. Here, a cell-free cartilage tissue engineering (TE) system was developed by applying an injectable chitosan/silk fibroin hydrogel. The hydrogel system could release first stromal cell-derived factor-1 (SDF-1) and then kartogenin (KGN) in a unique sequential drug release mode, which could spatiotemporally promote the recruitment and chondrogenic differentiation of MSCs. This system showed good performance when formulated with SDF-1 (200 ng/mL) and PLGA microspheres loaded with KGN (10 μΜ). The results showed that the hydrogel had good injectability and a reticular porous structure. The microspheres were distributed uniformly in the hydrogel and permitted the sequential release of SDF-1 and KGN. The results of in vitro experiments showed that the hydrogel system had good cytocompatibility and promoted the migration and differentiation of MSCs into chondrocytes. In vivo experiments on articular cartilage defects in rabbits showed that the cell-free hydrogel system was beneficial for cartilage regeneration. Therefore, the composite hydrogel system shows potential for application in cell-free cartilage TE.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 640 ◽  
Author(s):  
Serena Duchi ◽  
Stephanie Doyle ◽  
Timon Eekel ◽  
Cathal D. O’Connell ◽  
Cheryl Augustine ◽  
...  

Cartilage defects and diseases remain major clinical issues in orthopaedics. Biomanufacturing is now a tangible option for the delivery of bioscaffolds capable of regenerating the deficient cartilage tissue. However, several limitations of in vitro and experimental animal models pose serious challenges to the translation of preclinical findings into clinical practice. Ex vivo models are of great value for translating in vitro tissue engineered approaches into clinically relevant conditions. Our aim is to obtain a viable human osteochondral (OC) model to test hydrogel-based materials for cartilage repair. Here we describe a detailed step-by-step framework for the generation of human OC plugs, their culture in a perfusion device and the processing procedures for histological and advanced microscopy imaging. Our ex vivo OC model fulfils the following requirements: the model is metabolically stable for a relevant culture period of 4 weeks in a perfusion bioreactor, the processing procedures allowed for the analysis of 3 different tissues or materials (cartilage, bone and hydrogel) without compromising their integrity. We determined a protocol and the settings for a non-linear microscopy technique on label free sections. Furthermore, we established a clearing protocol to perform light sheet-based observations on the cartilage layer without the need for tedious and destructive histological procedures. Finally, we showed that our OC system is a clinically relevant in terms of cartilage regeneration potential. In conclusion, this OC model represents a valuable preclinical ex vivo tool for studying cartilage therapies, such as hydrogel-based bioscaffolds, and we envision it will reduce the number of animals needed for in vivo testing.


2021 ◽  
Vol 22 (21) ◽  
pp. 11769
Author(s):  
Victoria Horbert ◽  
Long Xin ◽  
Peter Föhr ◽  
René Huber ◽  
Rainer H. Burgkart ◽  
...  

Resorbable polyglycolic acid (PGA) chondrocyte grafts are clinically established for human articular cartilage defects. Long-term implant performance was addressed in a standardized in vitro model. PGA implants (+/− bovine chondrocytes) were placed inside cartilage rings punched out of bovine femoral trochleas (outer Ø 6 mm; inner defect Ø 2 mm) and cultured for 84 days (12 weeks). Cartilage/PGA hybrids were subsequently analyzed by histology (hematoxylin/eosin; safranin O), immunohistochemistry (aggrecan, collagens 1 and 2), protein assays, quantitative real-time polymerase chain reactions, and implant push-out force measurements. Cartilage/PGA hybrids remained vital with intact matrix until 12 weeks, limited loss of proteoglycans from “host” cartilage or cartilage–PGA interface, and progressively diminishing release of proteoglycans into the supernatant. By contrast, the collagen 2 content in cartilage and cartilage–PGA interface remained approximately constant during culture (with only little collagen 1). Both implants (+/− cells) displayed implant colonization and progressively increased aggrecan and collagen 2 mRNA, but significantly decreased push-out forces over time. Cell-loaded PGA showed significantly accelerated cell colonization and significantly extended deposition of aggrecan. Augmented chondrogenic differentiation in PGA and cartilage/PGA-interface for up to 84 days suggests initial cartilage regeneration. Due to the PGA resorbability, however, the model exhibits limitations in assessing the “lateral implant bonding”.


Author(s):  
Jing Chen ◽  
Peng An ◽  
Hua Zhang ◽  
Yansheng Zhang ◽  
Hua Wei ◽  
...  

Abstract Chondrocyte spheroids in 3D hydrogel are more beneficial to improve their survival and maintain chondrogenic phenotype comparing to dissociated chondrocytes. However, in-situ inducing cell into spheroids rather than encapsulating spheroids in a hydrogel remains a tremendous challenge because of the limitations of biochemical and viscoelastic controllability for hydrogel. Herein, a hydrogel consisting of photo-crosslinkable chitosan methacrylate (CHMA) and semi-interpenetrating polyvinyl alcohol (PVA) is developed as a cell-responsive matrix with controllable viscoelastic properties. The proposed CHMA-PVA precursor preferentially exhibits a weak gel-like state with a storage modulus of 16.9 Pa, loss modulus of 13.0 Pa and yielding stain of 1%, which could allow chondrocyte to vigorously move and assemble but hinder their precipitation before crosslinking. The chondrocytes could form microaggregates within 8 h in vitro and keep high viability. Moreover, subcutaneous implantation experiments demonstrate that the CHMA/PVA hydrogels are biocompatible and degrade within five weeks in vivo. The cell-free hydrogels are further placed in cylindrical cartilage defects in the rabbit femoral condyle and examined 8 weeks postoperatively. Gross, histological and immunohistochemical analyses reveal a significant acceleration for the cartilage regeneration. These findings suggest that this novel cell adhesion-responsive and histo-compatible hydrogel is promising for cartilage regeneration.


1997 ◽  
Vol 6 (2) ◽  
pp. 125-134 ◽  
Author(s):  
S. Kadiyala ◽  
R. G. Young ◽  
M. A. Thiede ◽  
S. P. Bruder

Mesenchymal Stem Cells (MSCs) possessing the capacity to differentiate into various cell types such as osteoblasts, chondrocytes, myoblasts, and adipocytes have been previously isolated from the marrow and periosteum of human, murine, lapine, and avian species. This study documents the existence of similar multipotential stem cells in canine marrow. The cells were isolated from marrow aspirates using a modification of techniques previously established for human MSCs (hMSCs), and found to possess similar growth and morphological characteristics, as well as osteochondrogenic potential in vivo and in vitro. On the basis of these results, the multipotential cells that were isolated and culture expanded are considered to be canine MSCs (cMSCs). The occurrence of cMSCs in the marrow was determined to be one per 2.5 × 104 nucleated cells. After enrichment of the cMSCs by centrifugation on a Per-coll cushion, the cells were cultivated in selected lots of serum. Like the hMSCs, cMSCs grew as colonies in primary culture and on replating, grew as a monolayer culture with very uniform spindle morphology. The population doubling time for these cMSCs was approximately 2 days. The morphology and the growth kinetics of the cMSCs were retained following repeated passaging. The osteogenic phenotype could be induced in the cMSC cultures by the addition of a synthetic glucocorticoid, dexamethasone. In these osteogenic cultures, alkaline phosphatase activity was elevated up to 10-fold, and mineralized matrix production was evident. When cMSCs were loaded onto porous ceramics and implanted in autologous canine or athymic murine hosts, copious amounts of bone and cartilage were formed in the pores of the implants. The MSC-mediated osteogenesis obtained by the implantation of the various MSC-loaded matrix combinations is the first evidence of osteogenesis in a canine model by implantation of culture expanded autologous stem cells. The identification and isolation of cMSCs now makes it feasible to pursue preclinical models of bone and cartilage regeneration in canine hosts.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chijimatsu Ryota ◽  
Miwa Satoshi ◽  
Okamura Gensuke ◽  
Miyahara Junya ◽  
Tachibana Naohiro ◽  
...  

Abstract Background Somatic stem cell transplantation has been performed for cartilage injury, but the reparative mechanisms are still conflicting. The chondrogenic potential of stem cells are thought as promising features for cartilage therapy; however, the correlation between their potential for chondrogenesis in vitro and in vivo remains undefined. The purpose of this study was to investigate the intrinsic chondrogenic condition depends on cell types and explore an indicator to select useful stem cells for cartilage regeneration. Methods The chondrogenic potential of two different stem cell types derived from adipose tissue (ASCs) and synovium (SSCs) of mice and humans was assessed using bone morphogenic protein-2 (BMP2) and transforming growth factor-β1 (TGFβ1). Their in vivo chondrogenic potential was validated through transplantation into a mouse osteochondral defect model. Results All cell types showed apparent chondrogenesis under the combination of BMP2 and TGFβ1 in vitro, as assessed by the formation of proteoglycan- and type 2 collagen (COL2)-rich tissues. However, our results vastly differed with those observed following single stimulation among species and cell types; apparent chondrogenesis of mouse SSCs was observed with supplementation of BMP2 or TGFβ1, whereas chondrogenesis of mouse ASCs and human SSCs was observed with supplementation of BMP2 not TGFβ1. Human ASCs showed no obvious chondrogenesis following single stimulation. Mouse SSCs showed the formation of hyaline-like cartilage which had less fibrous components (COL1/3) with supplementation of TGFβ1. However, human cells developed COL1/3+ tissues with all treatments. Transcriptomic analysis for TGFβ receptors and ligands of cells prior to chondrogenic induction did not indicate their distinct reactivity to the TGFβ1 or BMP2. In the transplanted site in vivo, mouse SSCs formed hyaline-like cartilage (proteoglycan+/COL2+/COL1−/COL3−) but other cell types mainly formed COL1/3-positive fibrous tissues in line with in vitro reactivity to TGFβ1. Conclusion Optimal chondrogenic factors driving chondrogenesis from somatic stem cells are intrinsically distinct among cell types and species. Among them, the response to TGFβ1 may possibly represent the fate of stem cells when locally transplanted into cartilage defects.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Weimin Guo ◽  
Xifu Zheng ◽  
Weiguo Zhang ◽  
Mingxue Chen ◽  
Zhenyong Wang ◽  
...  

Articular cartilage lacks a blood supply and nerves. Hence, articular cartilage regeneration remains a major challenge in orthopedics. Decellularized extracellular matrix- (ECM-) based strategies have recently received particular attention. The structure of native cartilage exhibits complex zonal heterogeneity. Specifically, the development of a tissue-engineered scaffold mimicking the aligned structure of native cartilage would be of great utility in terms of cartilage regeneration. Previously, we fabricated oriented PLGA/ACECM (natural, nanofibrous, articular cartilage ECM) composite scaffolds. In vitro, we found that the scaffolds not only guided seeded cells to proliferate in an aligned manner but also exhibited high biomechanical strength. To detect whether oriented cartilage regeneration was possible in vivo, we used mesenchymal stem cell (MSC)/scaffold constructs to repair cartilage defects. The results showed that cartilage defects could be completely regenerated. Histologically, these became filled with hyaline cartilage and subchondral bone. Moreover, the aligned structure of cartilage was regenerated and was similar to that of native tissue. In conclusion, the MSC/scaffold constructs enhanced the structure-specific regeneration of hyaline cartilage in a rabbit model and may be a promising treatment strategy for the repair of human cartilage defects.


Sign in / Sign up

Export Citation Format

Share Document