scholarly journals Peer Review #1 of "Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue (v0.3)"

PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e1399 ◽  
Author(s):  
Sofía Arriarán ◽  
Silvia Agnelli ◽  
Xavier Remesar ◽  
José Antonio Fernández-López ◽  
Marià Alemany

Background and Objectives.White adipose tissue (WAT) shows marked sex- and diet-dependent differences. However, our metabolic knowledge of WAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four main WAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent of WAT implication on body amino-nitrogen metabolism.Experimental Design.Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene expression and enzyme activities.Results.There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males’ subcutaneous WAT.Conclusions.We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole.


GeroScience ◽  
2021 ◽  
Author(s):  
Haihui Zhuang ◽  
Sira Karvinen ◽  
Timo Törmäkangas ◽  
Xiaobo Zhang ◽  
Xiaowei Ojanen ◽  
...  

AbstractAerobic capacity is a strong predictor of longevity. With aging, aerobic capacity decreases concomitantly with changes in whole body metabolism leading to increased disease risk. To address the role of aerobic capacity, aging, and their interaction on metabolism, we utilized rat models selectively bred for low and high intrinsic aerobic capacity (LCRs/HCRs) and compared the metabolomics of serum, muscle, and white adipose tissue (WAT) at two time points: Young rats were sacrificed at 9 months of age, and old rats were sacrificed at 21 months of age. Targeted and semi-quantitative metabolomics analysis was performed on the ultra-pressure liquid chromatography tandem mass spectrometry (UPLC-MS) platform. The effects of aerobic capacity, aging, and their interaction were studied via regression analysis. Our results showed that high aerobic capacity is associated with an accumulation of isovalerylcarnitine in muscle and serum at rest, which is likely due to more efficient leucine catabolism in muscle. With aging, several amino acids were downregulated in muscle, indicating more efficient amino acid metabolism, whereas in WAT less efficient amino acid metabolism and decreased mitochondrial β-oxidation were observed. Our results further revealed that high aerobic capacity and aging interactively affect lipid metabolism in muscle and WAT, possibly combating unfavorable aging-related changes in whole body metabolism. Our results highlight the significant role of WAT metabolism for healthy aging.


2020 ◽  
Author(s):  
Haihui Zhuang ◽  
Sira Karvinen ◽  
Xiaobo Zhang ◽  
Xiaowei Ojanen ◽  
Timo Törmakangas ◽  
...  

ABSTRACTAerobic capacity is a strong predictor of longevity. With aging, aerobic capacity decreases concomitantly with changes in whole body metabolism leading to increased disease risk. To address the role of aerobic capacity, aging and their interaction on metabolism, we utilized rat models of low and high intrinsic aerobic capacity (LCRs/HCRs) and assessed the metabolomics of serum, muscle, and white adipose tissue (WAT). We compared LCRs and HCRs at two time points: Young rats were sacrificed at 9 months, and old rats were sacrificed at 21 months. Targeted and semi-quantitative metabolomics analysis was performed on ultra-pressure Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS) platform. Interaction of aerobic capacity and aging was studied via regression analysis. Our results showed at young age, metabolites linked to amino acid metabolism differed in serum and muscle with aerobic capacity, whereas no difference were observed in WAT. In aged animals, most prominent changes in metabolites occurred in WAT. Aerobic capacity and aging interactively affected seven metabolites linked to energy metabolism. Our results support previous findings that high aerobic capacity is associated with more efficient amino acid metabolism in muscle. While impaired branched chain amino acids (BCAAs) and fatty acid metabolism in the muscle may associate to the high risk of metabolic disorders and shorter lifespan previously observed in LCRs. The interactive effects of aging and aerobic capacity on energy metabolism-related metabolites were largely driven by HCRs, reflecting the importance of inherited aerobic capacity in the aging process. Our results highlight that dysfunctional mitochondrial β-oxidation in WAT may be one key mechanism related to aging.


Sign in / Sign up

Export Citation Format

Share Document