scholarly journals Ophiacodon long bone histology: the earliest occurrence of FLB in the mammalian stem lineage

Author(s):  
Christen Shelton ◽  
P. Martin Sander

The origin of mammalian endothermy has long been held to reside within the early therapsid groups. However, shared histological characteristics have been observed in the bone matrix and vascularity between Ophiacodontidae and the later therapsids (Synapsida). Historically, this coincidence has been explained as simply a reflection of the presumed aquatic lifestyle of Ophiacodon or even a sign of immaturity. Here we show, by histologically sampling an ontogenetic series of Ophiacodon humeri, as well as additional material, the existence of true fibrolamellar bone in the postcranial bones of a member of ‘Pelycosauria’. Our findings have reaffirmed what previous studies first described as fast growing tissue, and by proxy, have disproven that the highly vascularized cortex is simply a reflection of young age. This tissue demonstrates the classic histological characteristics of true fibrolamellar bone (FLB). The cortex consists of primary osteons in a woven bone matrix and remains highly vascularized throughout ontogeny providing evidence to fast skeletal growth. Overall, the FLB tissue we have described in Ophiacodon is more derived or “mammal-like” in terms of the osteonal development, bone matrix, and skeletal growth then what has been described thus far for any other pelycosaur taxa. Ophioacodon bone histology does not show well-developed Haversian tissue. With regards to the histological record, our results remain inconclusive as to the preferred ecology of Ophiacodon, but support the growing evidence for an aquatic lifestyle. Our findings have set the evolutionary origins of modern mammalian endothermy and high skeletal growth rates back approximately 20 M.Y. to the Early Permian, and by phylogenetic extension perhaps the Late Carboniferous.

2015 ◽  
Author(s):  
Christen Shelton ◽  
P. Martin Sander

The origin of mammalian endothermy has long been held to reside within the early therapsid groups. However, shared histological characteristics have been observed in the bone matrix and vascularity between Ophiacodontidae and the later therapsids (Synapsida). Historically, this coincidence has been explained as simply a reflection of the presumed aquatic lifestyle of Ophiacodon or even a sign of immaturity. Here we show, by histologically sampling an ontogenetic series of Ophiacodon humeri, as well as additional material, the existence of true fibrolamellar bone in the postcranial bones of a member of ‘Pelycosauria’. Our findings have reaffirmed what previous studies first described as fast growing tissue, and by proxy, have disproven that the highly vascularized cortex is simply a reflection of young age. This tissue demonstrates the classic histological characteristics of true fibrolamellar bone (FLB). The cortex consists of primary osteons in a woven bone matrix and remains highly vascularized throughout ontogeny providing evidence to fast skeletal growth. Overall, the FLB tissue we have described in Ophiacodon is more derived or “mammal-like” in terms of the osteonal development, bone matrix, and skeletal growth then what has been described thus far for any other pelycosaur taxa. Ophioacodon bone histology does not show well-developed Haversian tissue. With regards to the histological record, our results remain inconclusive as to the preferred ecology of Ophiacodon, but support the growing evidence for an aquatic lifestyle. Our findings have set the evolutionary origins of modern mammalian endothermy and high skeletal growth rates back approximately 20 M.Y. to the Early Permian, and by phylogenetic extension perhaps the Late Carboniferous.


2020 ◽  
Vol 375 (1793) ◽  
pp. 20190142 ◽  
Author(s):  
Adam K. Huttenlocker ◽  
Christen D. Shelton

Varanopids were a group of small to medium-sized synapsids whose fossil record spans the Carboniferous through middle Permian. Although their phylogenetic relationships have received some interest in recent years, little is known about other aspects of their palaeobiology, including their skeletal growth, allometry and habitat preference. Here, we describe varanopid long bone histology based on a sample of well-preserved femora from the lower Permian Richards Spur fissure fill locality, Comanche County, Oklahoma, USA. The sample includes five femora from at least two varanopid taxa— Mycterosaurus and the large varanodontine Varanops brevirostris —and four additional mycterosaurine femora not diagnosed to genus. Prior work on femoral bone compactness provided a baseline to make lifestyle inferences and evaluate whether varanopids were ancestrally terrestrial. Moreover, the large availability of specimens spanning different sizes made possible an assessment of size-related ontogenetic histovariability. All specimens revealed moderately dense cortical bone tissues composed of sparsely vascularized parallel-fibred and lamellar bone with radially arranged rows of longitudinal canals (mostly simple), and many preserved regularly spaced growth marks (annuli and lines of arrested growth) as in modern varanids. We show that bone histology has the potential to explain how ballast was shed and the skeleton lightened for terrestrial mobility in ancestral synapsids and their basal amniote kin, as well as how adjustments in postnatal growth influenced the evolution of larger body sizes in the terrestrial frontier. This article is part of the theme issue ‘Vertebrate palaeophysiology'.


1972 ◽  
Vol 127 (4) ◽  
pp. 715-720 ◽  
Author(s):  
Bryan P. Toole ◽  
Andrew H. Kang ◽  
Robert L. Trelstad ◽  
Jerome Gross

The different anatomical regions involved in osteogenesis in the chick long bone have been examined for heterogeneities in collagen structure that might relate to the mechanism of ossification. Experimentally induced lathyrism was employed to enhance collagen solubility, and vitamin D deficiency to allow accumulation of osteoid, the precursor of bone matrix. The extractable lathyritic collagens of the cartilaginous and osseous regions of growing long bones from rachitic and non-rachitic chicks were examined for α-chain type and amino acid composition. In both groups of animals the growth plate and cartilaginous regions of the epiphysis gave collagen molecules of the constitution [α1(II)]3, whereas the ossifying regions contained [α1(I)]2 α2. The degree of hydroxylation of the lysine moieties was increased by approximately 50% in the α1(I)-chain and α2-chain of rachitic bone collagen. Since uncalcified osteoid is greatly enriched in rachitic bone, it is concluded that the collagen of osteoid has the configuration [α1(I)]2 α2, similar to that of bone matrix, but has an elevated hydroxylysine content. The possible relationship of this difference to the mechanism of calcification is discussed.


Author(s):  
Viktoriia KAMSKA ◽  
Edward B. DAESCHLER ◽  
Jason P. DOWNS ◽  
Per E. AHLBERG ◽  
Paul TAFFOREAU ◽  
...  

ABSTRACTHyneria lindae is one of the largest Devonian sarcopterygians. It was found in the Catskill Formation (late Famennian) of Pennsylvania, USA. The current study focuses on the palaeohistology of the humerus of this tristichopterid and supports a low ossification rate and a late ossification onset in the appendicular skeleton. In addition to anatomical features, the large size of the cell lacunae in the cortical bone of the humerus mid-shaft may suggest a large genome size and associated neotenic condition for this species, which could, in turn, be a partial explanation for the large size of H. lindae. The low metabolism of H. lindae revealed here by bone histology supports the hypothesis of an ambush predatory behaviour. Finally, the lines-of-arrested-growth pattern and late ossification of specimen ANSP 21483 suggest that H. lindae probably had a long juvenile stage before reaching sexual maturity. Although very few studies address the life-history traits of stem tetrapods, they all propose a slow limb development for the studied taxa despite different ecological conditions and presumably distinct behaviours. The bone histology of H. lindae would favour the hypothesis that a slow long-bone development could be a general character for stem tetrapods.


2018 ◽  
Vol 26 (3) ◽  
pp. 230949901880249 ◽  
Author(s):  
İbrahim Deniz Canbeyli ◽  
Rahmi Can Akgun ◽  
Orcun Sahin ◽  
Aysen Terzi ◽  
İsmail Cengiz Tuncay

Purpose: This study aimed to analyze the immunohistochemical effect of platelet-rich plasma (PRP) on healing of long-bone fractures in terms of bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF), the Ki-67 proliferation index, and radiological and histological analyses. Methods: Sixteen adult rabbits, whose right femoral diaphysis was fractured and fixed with Kirschner wires, were randomly divided into two groups, control and PRP (groups A and B, respectively). PRP was given to group B at 1 week postoperatively, and all animals were euthanized after 12 weeks. Radiographic evaluations were performed periodically. Cortical callus formation, chondroid and woven bone area percentages, osteoblastic and fibroblastic activities, and mature bone formation were examined. The depths of BMP-2 and VEGF staining were measured. The Ki-67 proliferation index was also calculated. Results: The mean radiological union score of group B was significantly higher than that of group A. There were also statistically significant differences between groups A and B in terms of cortical callus formation, woven bone area percentage, fibroblast proliferation, and mature bone formation. Group B had significantly more cortical callus and mature bone formation with less woven bone and fibroblast proliferation. Immunohistochemical analysis revealed no statistically significant difference between the groups in terms of BMP-2 and VEGF staining and the Ki-67 index. Conclusions: PRP had no effect on BMP-2 or VEGF levels with no increase in the Ki-67 proliferation index, although its application had a positive effect on bone healing by increasing callus and mature bone formation with decreased woven bone and fibroblast proliferation.


Orthopedics ◽  
2006 ◽  
Vol 29 (10) ◽  
pp. 939-941 ◽  
Author(s):  
Ronald W. Lindsey ◽  
Kalia K. Sadasivian ◽  
George W. Wood ◽  
Harrison A. Stubbs ◽  
Jon E. Block

2016 ◽  
Vol 29 (6) ◽  
pp. 715-729 ◽  
Author(s):  
Pavel P. Skutschas ◽  
Elizaveta A. Boitsova ◽  
Alexander O. Averianov ◽  
Hans-Dieter Sues

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Sara Rocío Chuguransky ◽  
Ana María Cortizo ◽  
Antonio Desmond McCarthy

Bisphosphonates such as alendronate are antiosteoporotic drugs that inhibit the activity of bone-resorbing osteoclasts and secondarily promote osteoblastic function. Diabetes increases bone-matrix-associated advanced glycation end products (AGEs) that impair bone marrow progenitor cell (BMPC) osteogenic potential and decrease bone quality. Here we investigated the in vitro effect of alendronate and/or AGEs on the osteoblastogenic, adipogenic, and chondrogenic potential of BMPC isolated from nondiabetic untreated rats. We also evaluated the in vivo effect of alendronate (administered orally to rats with insulin-deficient Diabetes) on long-bone microarchitecture and BMPC multilineage potential. In vitro, the osteogenesis (Runx2, alkaline phosphatase, type 1 collagen, and mineralization) and chondrogenesis (glycosaminoglycan production) of BMPC were both decreased by AGEs, while coincubation with alendronate prevented these effects. The adipogenesis of BMPC (PPARγ, intracellular triglycerides, and lipase) was increased by AGEs, and this was prevented by coincubation with alendronate. In vivo, experimental Diabetes (a) decreased femoral trabecular bone area, osteocyte density, and osteoclastic TRAP activity; (b) increased bone marrow adiposity; and (c) deregulated BMPC phenotypic potential (increasing adipogenesis and decreasing osteogenesis and chondrogenesis). Orally administered alendronate prevented all these Diabetes-induced effects on bone. Thus, alendronate could improve bone alterations in diabetic rats by preventing the antiosteogenic, antichondrogenic, and proadipocytic effects of AGEs on BMPC.


Sign in / Sign up

Export Citation Format

Share Document