scholarly journals Unbiased high-throughput characterization of mussel transcriptomic responses to sublethal concentrations of the biotoxin okadaic acid

Author(s):  
Victoria Suarez-Ulloa ◽  
Juan Fernandez-Tajes ◽  
Vanessa Aguiar-Pulido ◽  
M. Veronica Prego-Faraldo ◽  
Fernanda Florez-Barros ◽  
...  

Background: Diarrhetic Shellfish Poisoning (DSP) Harmful Algal Blooms (HABs) represent a major threat for human consumers of shellfish. The biotoxin Okadaic Acid (OA), a well-known phosphatase inhibitor and tumor promoter, is the main responsible of acute DSP intoxications. Although several studies have described the molecular effects of high OA concentrations on sentinel organisms (e.g., bivalve molluscs), the effect of prolonged exposures to low (sublethal) OA concentrations is still unknown. In order to fill this gap, this work combines Next-Generation sequencing and custom-made microarray technologies to develop an unbiased characterization of the transcriptomic response of mussels during early stages of a DSP bloom. Methods: Mussel specimens were exposed to a HAB episode simulating an early stage DSP bloom (200 cells/L of the dinoflagellate Prorocentrum lima for 24 hours). Modifications in the expression of environmentally relevant transcripts were initially assessed using qPCR. The unbiased characterization of the transcriptomic responses triggered by OA was carried out using two complementary methods of cDNA library preparation: normalized and Suppression Subtractive Hybridization (SSH). Libraries were sequenced and read datasets were mapped to Gene Ontology and KEGG databases. A custom-made oligonucleotide microarray was developed based on these data, completing the expression analysis of digestive gland and gill tissues. Results: Our findings show that exposure to sublethal concentrations of OA is enough to induce gene expression modifications in the mussel Mytilus. Transcriptomic analyses revealed an increase in proteasomal activity, molecular transport, cell cycle regulation, energy production and immune activity in mussels. Oppositely, a number of transcripts hypothesized to be responsive to OA (notably the Serine/Threonine phosphatases PP1 and PP2A) failed to show substantial modifications. Both digestive gland and gill tissues responded similarly to OA, although expression modifications were more dramatic in the former, supporting the choice of this tissue for future biomonitoring studies. Discussion: Exposure to OA concentrations within legal limits for safe consumption of shellfish is enough to disrupt important cellular processes in mussels, eliciting sharp transcriptional changes as a result. By combining the study of cDNA libraries and a custom-made OA-specific microarray, our work provides a comprehensive characterization of the OA-specific transcriptome, improving the accuracy of the analysis of expresion profiles compared to single-replicated RNA-seq methods. The combination of our data with related studies helps understanding the molecular mechanisms underlying molecular responses to DSP episodes in marine organisms, providing useful information to develop a new generation of OA biomarkers.

PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e1429 ◽  
Author(s):  
Victoria Suarez-Ulloa ◽  
Juan Fernandez-Tajes ◽  
Vanessa Aguiar-Pulido ◽  
M. Veronica Prego-Faraldo ◽  
Fernanda Florez-Barros ◽  
...  

Background.Harmful Algal Blooms (HABs) responsible for Diarrhetic Shellfish Poisoning (DSP) represent a major threat for human consumers of shellfish. The biotoxin Okadaic Acid (OA), a well-known phosphatase inhibitor and tumor promoter, is the primary cause of acute DSP intoxications. Although several studies have described the molecular effects of high OA concentrations on sentinel organisms (e.g., bivalve molluscs), the effect of prolonged exposures to low (sublethal) OA concentrations is still unknown. In order to fill this gap, this work combines Next-Generation sequencing and custom-made microarray technologies to develop an unbiased characterization of the transcriptomic response of mussels during early stages of a DSP bloom.Methods.Mussel specimens were exposed to a HAB episode simulating an early stage DSP bloom (200 cells/L of the dinoflagellateProrocentrum limafor 24 h). The unbiased characterization of the transcriptomic responses triggered by OA was carried out using two complementary methods of cDNA library preparation: normalized and Suppression Subtractive Hybridization (SSH). Libraries were sequenced and read datasets were mapped to Gene Ontology and KEGG databases. A custom-made oligonucleotide microarray was developed based on these data, completing the expression analysis of digestive gland and gill tissues.Results.Our findings show that exposure to sublethal concentrations of OA is enough to induce gene expression modifications in the musselMytilus. Transcriptomic analyses revealed an increase in proteasomal activity, molecular transport, cell cycle regulation, energy production and immune activity in mussels. Oppositely, a number of transcripts hypothesized to be responsive to OA (notably the Serine/Threonine phosphatases PP1 and PP2A) failed to show substantial modifications. Both digestive gland and gill tissues responded similarly to OA, although expression modifications were more dramatic in the former, supporting the choice of this tissue for future biomonitoring studies.Discussion.Exposure to OA concentrations within legal limits for safe consumption of shellfish is enough to disrupt important cellular processes in mussels, eliciting sharp transcriptional changes as a result. By combining the study of cDNA libraries and a custom-made OA-specific microarray, our work provides a comprehensive characterization of the OA-specific transcriptome, improving the accuracy of the analysis of expresion profiles compared to single-replicated RNA-seq methods. The combination of our data with related studies helps understanding the molecular mechanisms underlying molecular responses to DSP episodes in marine organisms, providing useful information to develop a new generation of tools for the monitoring of OA pollution.


2015 ◽  
Author(s):  
Victoria Suarez-Ulloa ◽  
Juan Fernandez-Tajes ◽  
Vanessa Aguiar-Pulido ◽  
M. Veronica Prego-Faraldo ◽  
Fernanda Florez-Barros ◽  
...  

Background: Diarrhetic Shellfish Poisoning (DSP) Harmful Algal Blooms (HABs) represent a major threat for human consumers of shellfish. The biotoxin Okadaic Acid (OA), a well-known phosphatase inhibitor and tumor promoter, is the main responsible of acute DSP intoxications. Although several studies have described the molecular effects of high OA concentrations on sentinel organisms (e.g., bivalve molluscs), the effect of prolonged exposures to low (sublethal) OA concentrations is still unknown. In order to fill this gap, this work combines Next-Generation sequencing and custom-made microarray technologies to develop an unbiased characterization of the transcriptomic response of mussels during early stages of a DSP bloom. Methods: Mussel specimens were exposed to a HAB episode simulating an early stage DSP bloom (200 cells/L of the dinoflagellate Prorocentrum lima for 24 hours). Modifications in the expression of environmentally relevant transcripts were initially assessed using qPCR. The unbiased characterization of the transcriptomic responses triggered by OA was carried out using two complementary methods of cDNA library preparation: normalized and Suppression Subtractive Hybridization (SSH). Libraries were sequenced and read datasets were mapped to Gene Ontology and KEGG databases. A custom-made oligonucleotide microarray was developed based on these data, completing the expression analysis of digestive gland and gill tissues. Results: Our findings show that exposure to sublethal concentrations of OA is enough to induce gene expression modifications in the mussel Mytilus. Transcriptomic analyses revealed an increase in proteasomal activity, molecular transport, cell cycle regulation, energy production and immune activity in mussels. Oppositely, a number of transcripts hypothesized to be responsive to OA (notably the Serine/Threonine phosphatases PP1 and PP2A) failed to show substantial modifications. Both digestive gland and gill tissues responded similarly to OA, although expression modifications were more dramatic in the former, supporting the choice of this tissue for future biomonitoring studies. Discussion: Exposure to OA concentrations within legal limits for safe consumption of shellfish is enough to disrupt important cellular processes in mussels, eliciting sharp transcriptional changes as a result. By combining the study of cDNA libraries and a custom-made OA-specific microarray, our work provides a comprehensive characterization of the OA-specific transcriptome, improving the accuracy of the analysis of expresion profiles compared to single-replicated RNA-seq methods. The combination of our data with related studies helps understanding the molecular mechanisms underlying molecular responses to DSP episodes in marine organisms, providing useful information to develop a new generation of OA biomarkers.


2021 ◽  
Vol 9 (3) ◽  
pp. 293
Author(s):  
Mauro Corriere ◽  
Lucía Soliño ◽  
Pedro Reis Costa

Natural high proliferations of toxin-producing microorganisms in marine and freshwater environments result in dreadful consequences at the socioeconomically and environmental level due to water and seafood contamination. Monitoring programs and scientific evidence point to harmful algal blooms (HABs) increasing in frequency and intensity as a result of global climate alterations. Among marine toxins, the okadaic acid (OA) and the related dinophysistoxins (DTX) are the most frequently reported in EU waters, mainly in shellfish species. These toxins are responsible for human syndrome diarrhetic shellfish poisoning (DSP). Fish, like other marine species, are also exposed to HABs and their toxins. However, reduced attention has been given to exposure, accumulation, and effects on fish of DSP toxins, such as OA. The present review intends to summarize the current knowledge of the impact of DSP toxins and to identify the main issues needing further research. From data reviewed in this work, it is clear that exposure of fish to DSP toxins causes a range of negative effects, from behavioral and morphological alterations to death. However, there is still much to be investigated about the ecological and food safety risks related to contamination of fish with DSP toxins.


Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 458
Author(s):  
Juan Blanco ◽  
Carmen Mariño ◽  
Helena Martín ◽  
Gonzalo Álvarez ◽  
Araceli E. Rossignoli

Cultures of the mussel Mytilus galloprovincialis are frequently affected by accumulation of the amnesic shellfish poisoning toxin domoic acid (DA). This species is characterized by a fast uptake and release of the toxin. In this work, the main characteristics of the uptake mechanism have been studied by incubation of digestive gland thin slices in media with different composition and DA concentration. DA uptake seems to follow Michaelis–Menten kinetics, with a very high estimated KM (1722 µg DA mL−1) and a Vmax of 71.9 µg DA g−1 h−1, which is similar to those found for other amino acids in invertebrates. Replacement of NaCl from the incubation media by Cl-choline (Na+-free medium) did not significantly reduce the uptake, but replacement by sorbitol (Na+-free and Cl−-depleted medium) did. A new experiment replacing all chlorides with their equivalent gluconates (Na+- and Cl−-free medium) showed an important reduction in the uptake that should be attributed to the absence of chloride, pointing to a Na+-independent, Cl− (or anion-) dependent transporter. In media with Na+ and Cl−, neither decreasing the pH nor adding cyanide (a metabolic inhibitor) had significant effect on DA uptake, suggesting that the transport mechanism is not H+- or ATP-dependent. In a chloride depleted medium, lowering pH or adding CN increased the uptake, suggesting that other anions could, at least partially, substitute chloride.


Toxins ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 395 ◽  
Author(s):  
Juan Blanco ◽  
Helena Martín ◽  
Carmen Mariño ◽  
Araceli E. Rossignoli

Okadaic acid (OA) and other toxins of the diarrheic shellfish poisoning (DSP) group are accumulated and transformed mainly in many bivalves, inside the digestive gland cells. In this work the absorption of okadaic acid by those cells has been studied by supplying the toxin dissolved in water and including it in oil droplets given to primary cell cultures, and by checking if the uptake is saturable and/or energy-dependent. Okadaic acid was found to be absorbed preferentially from the dissolved phase, and the uptake from oil droplets was substantially lower. The process did not require energy and was non-saturable, indicating that it involved a simple diffusion across the cellular membrane. Some apparent saturation was found due to the quick biotransformation of OA to 7-O-acyl esters.


Toxins ◽  
2010 ◽  
Vol 2 (1) ◽  
pp. 195-204 ◽  
Author(s):  
Tsuyoshi Ikehara ◽  
Shihoko Imamura ◽  
Atsushi Yoshino ◽  
Takeshi Yasumoto

Okadaic acid and its analogs (OAs) responsible for diarrhetic shellfish poisoning (DSP) strongly inhibit protein phosphatase 2A (PP2A) and thus are quantifiable by measuring the extent of the enzyme inhibition. In this study, we evaluated the suitability of the catalytic subunit of recombinant human PP2A (rhPP2Ac) for use in a microplate OA assay. OA, dinophysistoxin-1(DTX1), and hydrolyzate of 7-O-palmitoyl-OA strongly inhibited rhPP2Ac activity with IC50 values of 0.095, 0.104, and 0.135 nM, respectively. The limits of detection and quantitation for OA in the digestive gland of scallops and mussels were 0.0348 μg/g and 0.0611 μg/g respectively, and, when converted to the whole meat basis, are well below the regulation level proposed by EU (0.16 μg/g whole meat). A good correlation with LC-MS data was demonstrated, the correlation coefficient being 0.996 with the regression slope of 1.097.


Harmful Algae ◽  
2021 ◽  
Vol 106 ◽  
pp. 102066
Author(s):  
Hailong Huang ◽  
Qing Xu ◽  
Kate Gibson ◽  
Yang Chen ◽  
Nansheng Chen

Sign in / Sign up

Export Citation Format

Share Document