scholarly journals Theropod hindlimbs with feeding and other traces reveal ecosystem dynamics in the Maastrichtian of eastern North America

Author(s):  
Chase D Brownstein

Direct documentation of the ecology of past life is often rare when the fossil record is comparatively poor, as in the case of the terrestrial fauna of the Maastrichtian of eastern North America. Here, I describe a femur and partial tibia shaft assignable to theropods from the Maastrichtian Big Brook locality of New Jersey. The former, identifiable to a previously undetected morphotype of large ornithomimosaur, bears several scrapes identifiable as the feeding traces of sharks, adding to the collection of terrestrial vertebrate remains bearing such marks from the state. The latter is littered with tooth marks and punctures from possibly multiple crocodyliform individuals, the first documented occurrence of such traces on dinosaur bone from the Maastrichtian of the Atlantic Coastal Plain. Additionally, its surface is dotted with likely traces of invertebrates, revealing a microcosm of biological interaction from the Maastrichtian New Jersey shoreline. Previously, the massive Campanian crocodylian taxon Deinosuchus rugosus and the slightly smaller Cenomanian-age Texas crocodyliform Deltasuchus motherali have been shown as important drivers of terrestrial vertebrate taphonomy in eastern North America. The report of crocodyliform bite marks on the ornithomimosaur metatarsal shaft in this manuscript reveals that crocodylians continued to play role in the taphonomy of large dinosaurs in eastern North America through the end of the Mesozoic. The preserved invertebrate traces add to the sparse record of their traces on dinosaur bone, and the presence of shark scrapes on the femur supports the “bloat-and-float” model of terrestrial vertebrate fossil deposition in eastern North America.

2018 ◽  
Author(s):  
Chase D Brownstein

Direct documentation of the ecology of past life is often rare when the fossil record is comparatively poor, as in the case of the terrestrial fauna of the Maastrichtian of eastern North America. Here, I describe a femur and partial tibia shaft assignable to theropods from the Maastrichtian Big Brook locality of New Jersey. The former, identifiable to a previously undetected morphotype of large ornithomimosaur, bears several scrapes identifiable as the feeding traces of sharks, adding to the collection of terrestrial vertebrate remains bearing such marks from the state. The latter is littered with tooth marks and punctures from possibly multiple crocodyliform individuals, the first documented occurrence of such traces on dinosaur bone from the Maastrichtian of the Atlantic Coastal Plain. Additionally, its surface is dotted with likely traces of invertebrates, revealing a microcosm of biological interaction from the Maastrichtian New Jersey shoreline. Previously, the massive Campanian crocodylian taxon Deinosuchus rugosus and the slightly smaller Cenomanian-age Texas crocodyliform Deltasuchus motherali have been shown as important drivers of terrestrial vertebrate taphonomy in eastern North America. The report of crocodyliform bite marks on the ornithomimosaur metatarsal shaft in this manuscript reveals that crocodylians continued to play role in the taphonomy of large dinosaurs in eastern North America through the end of the Mesozoic. The preserved invertebrate traces add to the sparse record of their traces on dinosaur bone, and the presence of shark scrapes on the femur supports the “bloat-and-float” model of terrestrial vertebrate fossil deposition in eastern North America.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4973
Author(s):  
Chase D. Brownstein

Direct evidence of paleoecological processes is often rare when the fossil record is poor, as in the case of the Cretaceous of eastern North America. Here, I describe a femur and partial tibia shaft assignable to theropods from two Late Cretaceous sites in New Jersey. The former, identifiable as the femur of a large ornithomimosaur, bears several scores interpreted as shark feeding traces. The tibia shaft has punctures and flaked bone from the bites of mid-sized crocodyliforms, the first documented occurrence of crocodyliform traces on dinosaur bone from the Maastrichtian of the Atlantic Coastal Plain. The surface of the partial tibia is also littered with indentations interpreted as the traces of invertebrates, revealing a microcosm of biological interaction on the coastal seafloor of the Cretaceous Atlantic Ocean. Massive crocodyliforms, such as Deinosuchus rugosus and the slightly smaller Deltasuchus motherali, maintained the role of terrestrial vertebrate taphonomic process drivers in eastern North America during the Cretaceous. The report of crocodyliform bite marks on the ornithomimosaur tibia shaft in this manuscript reinforces the importance of the role of crocodyliforms in the modification of terrestrial vertebrate remains during the Cretaceous in North America. The preserved invertebrate traces add to the sparse record of the presence of barnacles and other marine invertebrates on dinosaur bone, and the evidence of shark feeding on the ornithomimosaur femur support the “bloat-and-float” model of terrestrial vertebrate fossil deposition in marine deposits from the Cretaceous of eastern North America.


2019 ◽  
Vol 6 (11) ◽  
pp. 191206 ◽  
Author(s):  
Chase Doran Brownstein

The faunal changes that occurred in the few million years before the Cretaceous–Palaeogene extinction are of much interest to vertebrate palaeontologists. Western North America preserves arguably the best fossil record from this time, whereas terrestrial vertebrate fossils from the eastern portion of the continent are usually limited to isolated, eroded postcranial remains. Examination of fragmentary specimens from the American east, which was isolated for the majority of the Cretaceous as the landmass Appalachia, is nonetheless important for better understanding dinosaur diversity at the end of the Mesozoic. Here, I report on two theropod teeth from the Mount Laurel Formation, a lower-middle Maastrichtian unit from northeastern North America. One of these preserves in detail the structure of the outer enamel and resembles the dentition of the tyrannosauroid Dryptosaurus aquilunguis among latest Cretaceous forms in being heavily mediolaterally compressed and showing many moderately developed enamel crenulations. Along with previously reported tyrannosauroid material from the Mt Laurel and overlying Cretaceous units, this fossil supports the presence of non-tyrannosaurid tyrannosauroids in the Campanian–Maastrichtian of eastern North America and provides evidence for the hypothesis that the area was still home to relictual vertebrates through the end of the Mesozoic. The other tooth is assignable to a dromaeosaurid and represents both the youngest occurrence of a non-avian maniraptoran in eastern North America and the first from the Maastrichtian reported east of the Mississippi. This tooth, which belonged to a 3–4 m dromaeosaurid based on size comparisons with the teeth of taxa for which skeletons are known, increases the diversity of the Maastrichtian dinosaur fauna of Appalachia. Along with previously reported dromaeosaurid teeth, the Mt Laurel specimen supports the presence of mid-sized to large dromaeosaurids in eastern North America throughout the Cretaceous.


2020 ◽  
pp. 1-9
Author(s):  
Chase Doran Brownstein ◽  
Immanuel Bissell

Abstract Although the fossil record of the Late Cretaceous eastern North American landmass Appalachia is poor compared to that from the American West, it includes material from surprisingly aberrant terrestrial vertebrates that may represent relictual forms persisting in relative isolation until the end of the Mesozoic. One intriguing question is to what extent eastern and western North American faunas interspersed following the closure of the Western Interior Seaway during the Maastrichtian Stage of the Late Cretaceous ca. 70 Ma. Isolated remains from the Atlantic Coastal Plain in New Jersey have been preliminarily identified as the bones of crested lambeosaurine hadrosaurids, a derived clade known from the Cretaceous of Asia, western North America, and Europe, but have not been formally described. We describe the partial forelimb of a large hadrosaurid from the late Maastrichtian New Egypt Formation of New Jersey. The ulna preserves multiple deep scores identifiable as shark feeding marks, and both bones show ovoid and circular marks attributable to invertebrates. This forelimb is very similar to another partial antebrachium from the same area that shows evidence of septic arthritis. Both these specimens and a complete humerus from the same unit are closely comparable to the lower forelimbs of lambeosaurines among hadrosaurid dinosaurs. Although the absence of lambeosaurine synapomorphies observable on the New Egypt Formation forelimbs precludes their definite referral to Lambeosaurinae, they show that a morphotype of large hadrosauromorph with distinctly elongate forelimbs existed in the latest Maastrichtian of eastern North America and allow for a revision of the latest Cretaceous biogeography of crested herbivorous dinosaurs.


2016 ◽  
Vol 81 (1) ◽  
pp. 174-192 ◽  
Author(s):  
Metin I. Eren ◽  
Anne Chao ◽  
Chun-Huo Chiu ◽  
Robert K. Colwell ◽  
Briggs Buchanan ◽  
...  

AbstractRonald Mason’s hypothesis from the 1960s that the southeastern United States possesses greater Paleoindian projectile-point diversity than other regions is regularly cited, and often assumed to be true, but in fact has never been quantitatively tested. Even if valid, however, the evolutionary meaning of this diversity is contested. Point diversity is often linked to Clovis “origins,” but point diversity could also arise from group fissioning and drift, admixture, adaptation, or multiple founding events, among other possibilities. Before archaeologists can even begin to discuss these scenarios, it is paramount to ensure that what we think we know is representative of reality. To this end, we tested Mason’s hypothesis for the first time, using a sample of 1,056 Paleoindian points from eastern North America arui employing paradigmatic classification and rigorous statistical tools used in the quantification of ecological biodiversity. Our first set of analyses, which compared the Southeast to the Northeast, showed that the Southeast did indeed possess significantly greater point-class richness. Although this result was consistent with Mason’s hypothesis, our second set of analyses, which compared the Upper Southeast to the Lower Southeast and the Northeast showed that in terms of point-class richness the Upper Southeast > Lower Southeast > Northeast. Given current chronometrie evidence, we suggest that this latter result is consistent with the suggestion that the area of the Ohio, Cumberland, and Tennessee River valleys, as well as the mid-Atlantic coastal plain, were possible initial and secondary “staging areas” for colonizing Paleoindian foragers moving from western to eastern North America.


1992 ◽  
Vol 70 (10) ◽  
pp. 2042-2058 ◽  
Author(s):  
R. Marcel Reeves

Adults of four new species of Carabodes, C. chandleri, C. erectus, C. interruptus, and C. pentasetosus, and the immatures of C. erectus, are described. All have been collected from a variety of forest-floor habitats, with C. chandleri, C. interruptus, and C. pentasetosus more common in leaf litter, and C. erectus preferring polyporous fungi. All four species are widely distributed in eastern North America, with C. chandleri, C. erectus, and C. interruptus more abundant in samples from the Appalachian Mountains and C. pentasetosus in those from the Atlantic coastal plain. Thelytokous parthenogenesis is suspected to occur in C. pentasetosus n.sp. and Carabodes granulatus Banks. A key to the 19 species of Carabodes found in North America is provided.


Sign in / Sign up

Export Citation Format

Share Document