scholarly journals Deep learning for conflicting statements detection in text

Author(s):  
Vijay Lingam ◽  
Simran Bhuria ◽  
Mayukh Nair ◽  
Divij Gurpreetsingh ◽  
Anjali Goyal ◽  
...  

Background. Automatic contradiction detection or conflicting statements detection in text consists of identifying discrepancy, inconsistency and defiance in text and has several real world applications in questions and answering systems, multi-document summarization, dispute detection and finder in news, and detection of contradictions in opinions and sentiments on social media. Automatic contradiction detection is a technically challenging natural language processing problem. Contradiction detection between sources of text or two sentence pairs can be framed as a classification problem. Methods. We propose an approach for detecting three different types of contradiction: negation, antonyms and numeric mismatch. We derive several linguistic features from text and use it in a classification framework for detecting contradictions. The novelty of our approach in context to existing work is in the application of artificial neural networks and deep learning. Our approach uses techniques such as Long short-term memory (LSTM) and Global Vectors for Word Representation (GloVe). We conduct a series of experiments on three publicly available dataset on contradiction detection: Stanford dataset, SemEval dataset and PHEME dataset. In addition to existing dataset, we also create more dataset and make it publicly available. We measure the performance of our proposed approach using confusion and error matrix and accuracy. Results. There are three feature combinations on our dataset: manual features, LSTM based features and combination of manual and LSTM features. The accuracy of our classifier based on both LSTM and manual features for the SemEval dataset is 91.2%. The classifier was able to correctly classify 3204 out of 3513 instances. The accuracy of our classifier based on both LSTM and manual features for the Stanford dataset is 71.9%. The classifier was able to correctly classify 855 out of 1189 instances. The accuracy for the PHEME dataset is the highest across all datasets. The accuracy for the contradiction class is 96.85%. Discussion. Experimental analysis demonstrate encouraging results proving our hypothesis that deep learning along with LSTM based features can be used for identifying contradictions in text. Our results shows accuracy improvement over manual features after applying LSTM based features. The accuracy results varies across datasets and we observe different accuracy across multiple types of contradictions. Feature analysis shows that the discriminatory power of the five feature varies.

2018 ◽  
Author(s):  
Vijay Lingam ◽  
Simran Bhuria ◽  
Mayukh Nair ◽  
Divij Gurpreetsingh ◽  
Anjali Goyal ◽  
...  

Background. Automatic contradiction detection or conflicting statements detection in text consists of identifying discrepancy, inconsistency and defiance in text and has several real world applications in questions and answering systems, multi-document summarization, dispute detection and finder in news, and detection of contradictions in opinions and sentiments on social media. Automatic contradiction detection is a technically challenging natural language processing problem. Contradiction detection between sources of text or two sentence pairs can be framed as a classification problem. Methods. We propose an approach for detecting three different types of contradiction: negation, antonyms and numeric mismatch. We derive several linguistic features from text and use it in a classification framework for detecting contradictions. The novelty of our approach in context to existing work is in the application of artificial neural networks and deep learning. Our approach uses techniques such as Long short-term memory (LSTM) and Global Vectors for Word Representation (GloVe). We conduct a series of experiments on three publicly available dataset on contradiction detection: Stanford dataset, SemEval dataset and PHEME dataset. In addition to existing dataset, we also create more dataset and make it publicly available. We measure the performance of our proposed approach using confusion and error matrix and accuracy. Results. There are three feature combinations on our dataset: manual features, LSTM based features and combination of manual and LSTM features. The accuracy of our classifier based on both LSTM and manual features for the SemEval dataset is 91.2%. The classifier was able to correctly classify 3204 out of 3513 instances. The accuracy of our classifier based on both LSTM and manual features for the Stanford dataset is 71.9%. The classifier was able to correctly classify 855 out of 1189 instances. The accuracy for the PHEME dataset is the highest across all datasets. The accuracy for the contradiction class is 96.85%. Discussion. Experimental analysis demonstrate encouraging results proving our hypothesis that deep learning along with LSTM based features can be used for identifying contradictions in text. Our results shows accuracy improvement over manual features after applying LSTM based features. The accuracy results varies across datasets and we observe different accuracy across multiple types of contradictions. Feature analysis shows that the discriminatory power of the five feature varies.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Kazi Nabiul Alam ◽  
Md Shakib Khan ◽  
Abdur Rab Dhruba ◽  
Mohammad Monirujjaman Khan ◽  
Jehad F. Al-Amri ◽  
...  

The COVID-19 pandemic has had a devastating effect on many people, creating severe anxiety, fear, and complicated feelings or emotions. After the initiation of vaccinations against coronavirus, people’s feelings have become more diverse and complex. Our aim is to understand and unravel their sentiments in this research using deep learning techniques. Social media is currently the best way to express feelings and emotions, and with the help of Twitter, one can have a better idea of what is trending and going on in people’s minds. Our motivation for this research was to understand the diverse sentiments of people regarding the vaccination process. In this research, the timeline of the collected tweets was from December 21 to July21. The tweets contained information about the most common vaccines available recently from across the world. The sentiments of people regarding vaccines of all sorts were assessed using the natural language processing (NLP) tool, Valence Aware Dictionary for sEntiment Reasoner (VADER). Initializing the polarities of the obtained sentiments into three groups (positive, negative, and neutral) helped us visualize the overall scenario; our findings included 33.96% positive, 17.55% negative, and 48.49% neutral responses. In addition, we included our analysis of the timeline of the tweets in this research, as sentiments fluctuated over time. A recurrent neural network- (RNN-) oriented architecture, including long short-term memory (LSTM) and bidirectional LSTM (Bi-LSTM), was used to assess the performance of the predictive models, with LSTM achieving an accuracy of 90.59% and Bi-LSTM achieving 90.83%. Other performance metrics such as precision,, F1-score, and a confusion matrix were also used to validate our models and findings more effectively. This study improves understanding of the public’s opinion on COVID-19 vaccines and supports the aim of eradicating coronavirus from the world.


2018 ◽  
Vol 10 (11) ◽  
pp. 113 ◽  
Author(s):  
Yue Li ◽  
Xutao Wang ◽  
Pengjian Xu

Text classification is of importance in natural language processing, as the massive text information containing huge amounts of value needs to be classified into different categories for further use. In order to better classify text, our paper tries to build a deep learning model which achieves better classification results in Chinese text than those of other researchers’ models. After comparing different methods, long short-term memory (LSTM) and convolutional neural network (CNN) methods were selected as deep learning methods to classify Chinese text. LSTM is a special kind of recurrent neural network (RNN), which is capable of processing serialized information through its recurrent structure. By contrast, CNN has shown its ability to extract features from visual imagery. Therefore, two layers of LSTM and one layer of CNN were integrated to our new model: the BLSTM-C model (BLSTM stands for bi-directional long short-term memory while C stands for CNN.) LSTM was responsible for obtaining a sequence output based on past and future contexts, which was then input to the convolutional layer for extracting features. In our experiments, the proposed BLSTM-C model was evaluated in several ways. In the results, the model exhibited remarkable performance in text classification, especially in Chinese texts.


Author(s):  
Satish Tirumalapudi

Abstract: Chat bots are software applications that help users to communicate with the machine and get the required result, this is where Natural Language Processing (NLP) comes into the picture. Natural language processing is based on deep learning that enables computers to acquire meaning from inputs given by the users. Natural language processing techniques can make possible the use of natural language to express ideas, thus drastically increasing accessibility. NLP engines rely on the elements of intent, utterance, entity, context, and session. Here in this project, we will be using Deep learning techniques which will be trained on the dataset which contains categories, patterns, and responses. Long Short-Term Memory (LSTM) is a Recurrent Neural Network that is capable of learning order dependence in sequence prediction problems. One of the most popular RNN approaches is LSTM to identify and control a dynamic system. We use an RNN to classify the category user’s message belongs to and then will give a response from the list of responses. Keywords: NLP – Natural Language Processing, LSTM – Long Short Term Memory, RNN – Recurrent Neural Networks.


Author(s):  
Yudi Widhiyasana ◽  
Transmissia Semiawan ◽  
Ilham Gibran Achmad Mudzakir ◽  
Muhammad Randi Noor

Klasifikasi teks saat ini telah menjadi sebuah bidang yang banyak diteliti, khususnya terkait Natural Language Processing (NLP). Terdapat banyak metode yang dapat dimanfaatkan untuk melakukan klasifikasi teks, salah satunya adalah metode deep learning. RNN, CNN, dan LSTM merupakan beberapa metode deep learning yang umum digunakan untuk mengklasifikasikan teks. Makalah ini bertujuan menganalisis penerapan kombinasi dua buah metode deep learning, yaitu CNN dan LSTM (C-LSTM). Kombinasi kedua metode tersebut dimanfaatkan untuk melakukan klasifikasi teks berita bahasa Indonesia. Data yang digunakan adalah teks berita bahasa Indonesia yang dikumpulkan dari portal-portal berita berbahasa Indonesia. Data yang dikumpulkan dikelompokkan menjadi tiga kategori berita berdasarkan lingkupnya, yaitu “Nasional”, “Internasional”, dan “Regional”. Dalam makalah ini dilakukan eksperimen pada tiga buah variabel penelitian, yaitu jumlah dokumen, ukuran batch, dan nilai learning rate dari C-LSTM yang dibangun. Hasil eksperimen menunjukkan bahwa nilai F1-score yang diperoleh dari hasil klasifikasi menggunakan metode C-LSTM adalah sebesar 93,27%. Nilai F1-score yang dihasilkan oleh metode C-LSTM lebih besar dibandingkan dengan CNN, dengan nilai 89,85%, dan LSTM, dengan nilai 90,87%. Dengan demikian, dapat disimpulkan bahwa kombinasi dua metode deep learning, yaitu CNN dan LSTM (C-LSTM),memiliki kinerja yang lebih baik dibandingkan dengan CNN dan LSTM.


Information ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 312 ◽  
Author(s):  
Asma Baccouche ◽  
Sadaf Ahmed ◽  
Daniel Sierra-Sosa ◽  
Adel Elmaghraby

Identifying internet spam has been a challenging problem for decades. Several solutions have succeeded to detect spam comments in social media or fraudulent emails. However, an adequate strategy for filtering messages is difficult to achieve, as these messages resemble real communications. From the Natural Language Processing (NLP) perspective, Deep Learning models are a good alternative for classifying text after being preprocessed. In particular, Long Short-Term Memory (LSTM) networks are one of the models that perform well for the binary and multi-label text classification problems. In this paper, an approach merging two different data sources, one intended for Spam in social media posts and the other for Fraud classification in emails, is presented. We designed a multi-label LSTM model and trained it on the joint datasets including text with common bigrams, extracted from each independent dataset. The experiment results show that our proposed model is capable of identifying malicious text regardless of the source. The LSTM model trained with the merged dataset outperforms the models trained independently on each dataset.


Author(s):  
Casper Shikali Shivachi ◽  
Refuoe Mokhosi ◽  
Zhou Shijie ◽  
Liu Qihe

The need to capture intra-word information in natural language processing (NLP) tasks has inspired research in learning various word representations at word, character, or morpheme levels, but little attention has been given to syllables from a syllabic alphabet. Motivated by the success of compositional models in morphological languages, we present a Convolutional-long short term memory (Conv-LSTM) model for constructing Swahili word representation vectors from syllables. The unified architecture addresses the word agglutination and polysemous nature of Swahili by extracting high-level syllable features using a convolutional neural network (CNN) and then composes quality word embeddings with a long short term memory (LSTM). The word embeddings are then validated using a syllable-aware language model ( 31.267 ) and a part-of-speech (POS) tagging task ( 98.78 ), both yielding very competitive results to the state-of-art models in their respective domains. We further validate the language model using Xhosa and Shona, which are syllabic-based languages. The novelty of the study is in its capability to construct quality word embeddings from syllables using a hybrid model that does not use max-over-pool common in CNN and then the exploitation of these embeddings in POS tagging. Therefore, the study plays a crucial role in the processing of agglutinative and syllabic-based languages by contributing quality word embeddings from syllable embeddings, a robust Conv–LSTM model that learns syllables for not only language modeling and POS tagging, but also for other downstream NLP tasks.


2020 ◽  
Vol 17 (6) ◽  
pp. 935-946
Author(s):  
Jihene Younes ◽  
Hadhemi Achour ◽  
Emna Souissi ◽  
Ahmed Ferchichi

Language identification is an important task in natural language processing that consists in determining the language of a given text. It has increasingly picked the interest of researchers for the past few years, especially for code-switching informal textual content. In this paper, we focus on the identification of the Romanized user-generated Tunisian dialect on the social web. We segment and annotate a corpus extracted from social media and propose a deep learning approach for the identification task. We use a Bidirectional Long Short-Term Memory neural network with Conditional Random Fields decoding (BLSTM-CRF). For word embeddings, we combine word-character BLSTM vector representation and Fast Text embeddings that takes into consideration character n-gram features. The overall accuracy obtained is 98.65%.


Author(s):  
Huu Nguyen Phat ◽  
Nguyen Thi Minh Anh

In the context of the ongoing forth industrial revolution and fast computer science development the amount of textual information becomes huge. So, prior to applying the seemingly appropriate methodologies and techniques to the above data processing their nature and characteristics should be thoroughly analyzed and understood. At that, automatic text processing incorporated in the existing systems may facilitate many procedures. So far, text classification is one of the basic applications to natural language processing accounting for such factors as emotions’ analysis, subject labeling etc. In particular, the existing advancements in deep learning networks demonstrate that the proposed methods may fit the documents’ classifying, since they possess certain extra efficiency; for instance, they appeared to be effective for classifying texts in English. The thorough study revealed that practically no research effort was put into an expertise of the documents in Vietnamese language. In the scope of our study, there is not much research for documents in Vietnamese. The development of deep learning models for document classification has demonstrated certain improvements for texts in Vietnamese. Therefore, the use of long short term memory network with Word2vec is proposed to classify text that improves both performance and accuracy. The here developed approach when compared with other traditional methods demonstrated somewhat better results at classifying texts in Vietnamese language. The evaluation made over datasets in Vietnamese shows an accuracy of over 90%; also the proposed approach looks quite promising for real applications.


Sign in / Sign up

Export Citation Format

Share Document