scholarly journals Geochemistry of siliciclastic rocks from the Shemshak Group (Upper Triassic–Middle Jurassic), northeastern Alborz, northern Iran: implications for palaeoweathering, provenance, and tectonic setting

2018 ◽  
Vol 62 (3) ◽  
Author(s):  
Azizollah TAHERI ◽  
Mahdi JAFARZADEH ◽  
John S. ARMSTRONG-ALTRIN ◽  
Seyed Reza MIRBAGHERI
2011 ◽  
Vol 149 (1) ◽  
pp. 19-38 ◽  
Author(s):  
ALI SHEKARIFARD ◽  
FRANÇOIS BAUDIN ◽  
KAZEM SEYED-EMAMI ◽  
JOHANN SCHNYDER ◽  
FATIMA LAGGOUN-DEFARGE ◽  
...  

AbstractOrganic petrography and geochemical analyses have been carried out on shales, carbonaceous shales and coals of the Shemshak Group (Upper Triassic–Middle Jurassic) from 15 localities along the Alborz Range of Northern Iran. Thermal maturity of organic matter (OM) has been investigated using vitrinite reflectance, Rock-Eval pyrolysis and elemental analysis of kerogen. Reflectance of autochthonous vitrinite varies from 0.6 to 2.2% indicating thermally early-mature to over-mature OM in the Shemshak Group, in agreement with other maturity parameters used. The shales of the Shemshak Group are characterized by poor to high residual organic carbon contents (0.13 to 5.84%) and the presence of hydrogen-depleted OM, predominantly as a consequence of oxidation of OM at the time of deposition and the hydrogen loss during petroleum generation. According to light-reflected microscopy results, vitrinite/vitrinite-like macerals are dominant in the kerogen concentrates from the shaly facies. The coals and carbonaceous shales of the Shemshak Group show a wide range in organic carbon concentration (3.5 to 88.6%) and composition (inertinite- and vitrinite-rich types), and thereby different petroleum potentials. Thermal modelling results suggest that low to moderate palaeo-heat flow, ranging from 47 to 79 mW m−2 (57 mW m−2 on average), affected the Central-Eastern Alborz basin during Tertiary time, the time of maximum burial of the Shemshak Group. The maximum temperature that induced OM maturation of the Shemshak Group seems to be related to its deep burial rather than to a very strong heat flow related to an uppermost Triassic–Liassic rifting. The interval of petroleum generation in the most deeply buried part of the Shemshak Group (i.e. Tazareh section) corresponds to Middle Jurassic–Early Cretaceous times. Exhumation of the Alborz Range during Late Neogene time, especially along the axis of the Central-Eastern Alborz, where maximum vitrinite reflectance values are recorded, probably destroyed possible petroleum accumulations. However, on the northern flank of the Central-Eastern Alborz, preservation of petroleum accumulations may be expected. The northern part of the basin therefore seems the best target for petroleum exploration.


1990 ◽  
Vol 27 (5) ◽  
pp. 702-711 ◽  
Author(s):  
Paul J. Umhoefer

The Upper Triassic to Middle Jurassic Cadwallader terrane lies on the northeastern edge of the Coast Plutonic Complex in southwestern British Columbia. Previous work on the Cadwallader Group, the basal unit of the terrane, suggested it was an Upper Triassic (Carnian to middle Norian) volcanic arc and related clastic rocks. Volcanism ceased in early Norian time. A detailed study of the upper part of the Cadwallader terrane (Tyaughton Group and overlying Last Creek formation) shows that it is a sedimentary sequence deposited on the fringe of the inactive Cadwallader magmatic arc. The Upper Triassic (middle to upper Norian) Tyaughton Group consists of nonmarine to shallow-marine clastic rocks and limestones that show sudden changes in depositional setting. The Lower to Middle Jurassic Last Creek formation, a transgressive sequence of clastic rocks, disconformably overlies the Tyaughton Group. The clastic rocks in the two units were derived from a mixed volcanic and plutonic source region that also included a minor metamorphic component and local lower Norian limestones. The stratigraphy of the upper part of the Cadwallader terrane records long-term thermal subsidence of the basin caused by cooling of the magmatic arc after volcanism ceased in the early Norian. The detailed stratigraphy of the upper Cadwallader terrane supports correlation of the Cadwallader with the Stikine terrane, along which it is currently structurally juxtaposed.


2009 ◽  
Vol 312 (1) ◽  
pp. 129-160 ◽  
Author(s):  
Franz Theodor Fürsich ◽  
Markus Wilmsen ◽  
Kazem Seyed-Emami ◽  
Mahmoud Reza Majidifard

Sign in / Sign up

Export Citation Format

Share Document