central alborz
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 25)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
Yasaman Talebi Otaghvar ◽  
Hamed Najafi Alamdarlo ◽  
Rohollah Esmaili ◽  
Mohamad Ali Asadi ◽  
Seyed Habibollah Mosavi ◽  
...  

2021 ◽  
Vol 14 (18) ◽  
Author(s):  
Mohammad Reza Naeeji ◽  
Iraj Maghfori-Moghaddam ◽  
Mahboubeh Hosseini-Barzi ◽  
Bahman Soleimany

2021 ◽  
pp. 1-17
Author(s):  
Behnam Shafiei Bafti ◽  
István Dunkl ◽  
Saeed Madanipour

Abstract The recently developed fluorite (U–Th)/He thermochronology (FHe) technique was applied to date fluorite mineralization and elucidate the exhumation history of the Mazandaran Fluorspar Mining District (MFMD) located in the east Central Alborz Mountains, Iran. A total of 32 fluorite single-crystal samples from four Middle Triassic carbonate-hosted fluorite deposits were dated. The presented FHe ages range between c. 85 Ma (age of fluorite mineralization) and c. 20 Ma (erosional cooling during the exhumation of the Alborz Mountains). The Late Cretaceous FHe ages (i.e. 84.5 ± 3.6, 78.8 ± 4.4 and 72.3 ± 3.5 Ma) are interpreted as the age of mineralization and confirm an epigenetic origin for ore mineralization in the MFMD, likely a result of prolonged hydrothermal circulation of basinal brines through potential source rocks. Most FHe ages scatter around the Eocene Epoch (55.4 ± 3.9 to 33.1 ± 1.7 Ma), recording an important cooling event after heating by regional magmatism in an extensional tectonic regime. Cooling of the heated fluorites, as a result of thermal relaxation in response to geothermal gradient re-equilibration after the end of magmatism, or exhumation cooling during extensional tectonics characterized by lower amount of erosion are most probably the causes of the recorded Eocene FHe cooling ages. Oligocene–Miocene FHe ages (i.e. 27.6 ± 1.4 to 19.5 ± 1.1 Ma) are related to the accelerated uplift of the whole Alborz Mountains, possibly as a result of the initial collision between the Afro-Arabian and Eurasian plates further to the south.


Author(s):  
Mahsa Afra ◽  
Taghi Shirzad ◽  
Mohsen Farrokhi ◽  
Jochen Braunmiller ◽  
Mohammad-Reza Hatami ◽  
...  

Author(s):  
Amir Talebi ◽  
Farideh Attar ◽  
Alireza Naqinezhad ◽  
Iwona Dembicz ◽  
Jürgen Dengler

2021 ◽  
Vol 21 (Suppliment-1) ◽  
pp. 2224-2234
Author(s):  
Leila Abbaspour Shirjoposht ◽  
Sayed Jamal al-Din Sheikh Zakariaee ◽  
Mohammad Reza Ansari ◽  
Mohammad Hashem Emami

2020 ◽  
Vol 33 (02) ◽  
pp. 511-524
Author(s):  
Leila Abbaspour Shirjoposht ◽  
Sayed Jamal al-Din Sheikh Zakariaee ◽  
Mohammad Reza Ansari ◽  
Mohammad Hashem Emami

The Ziaran volcanic Belt (ZVB), North of Iran contains a number of intra-continental alkaline volcanic range situated on South part of central Alborz Mountains, formed along the localized extensional basins developed in relation with the compressional regime of Eocene. The mid-upper Eocene volcanic suite comprises the extracted melt products of adiabatic decompression melting of the mantle that are represented by small volume intra-continental plate volcanic rocks of alkaline volcanism and their evaluated Rocks with compositions representative of mantle-derived, primary (or near-primary) melts. Trace element patterns with significant enrichment in LILE, HFSE and REEs, relative to Primitive Mantle. Chondrite-normalized of rare earth elements and enrichment in incompatible elements and their element ratios (e. g. LREE/HREE, MREE/HREE, LREE/MREE) shown these element modelling indicates that the magmas were generated by comparably variable degrees of partial melting of garnet lherzolite and a heterogeneous asthenospheric, OIB mantle sources.


2020 ◽  
Vol 33 (02) ◽  
pp. 392-408
Author(s):  
Farzaneh Farahi ◽  
Saeed Taki ◽  
Mojgan Salavati

The gabbroic rocks in the Gysel area of the Central Alborz Mountains in north Iran are intruded into the Eocene Volcano-sedimentary units. The main gabbroic rocks varieties include gabbro porphyry, olivine gabbro, olivine dolerite and olivine monzo-gabbro. The main minerals phases in the rocks are plagioclase and pyroxene and the chief textures are sub-hedral granular, trachytoidic, porphyritic, intergranular and poikilitic. Electron microprobe analyses on minerals in the rock samples shows that plagioclase composition ranges from labradorite to bytonite, with oscillatory and normal chemical zonings. Clinopyroxene is augite and orthopyroxene is hypersthene to ferro-hypersthene. Thermometry calculations indicate temperatures of 650˚C to 750˚C for plagioclase crystallization and 950˚C to 1130˚C for pyroxene crystallization. Clinopyroxene chemistry reveals sub-alkaline and calc-alkaline nature for the parental magma emplaced in a volcanic arc setting.


Sign in / Sign up

Export Citation Format

Share Document