Sizing Optimization of CFRP Lower Control Arm Considering Strength and Stiffness Conditions

2016 ◽  
Vol 21 (4) ◽  
pp. 389-396
Author(s):  
Juhee Lim ◽  
Jaehyeok Doh ◽  
SangHyuk Yoo ◽  
Ohsung Kang ◽  
Keonwook Kang ◽  
...  

2012 ◽  
Vol 430-432 ◽  
pp. 1996-1999
Author(s):  
Li Hui Zhao ◽  
Han Gu ◽  
Qing Quan Hong

Structure optimization of lower control arm was performed under three proving ground road conditions to find the best drawbead distribution. First, multi-body dynamics analysis was carried on to determine the deficiency of the lower control arm. Then shape optimization was applied based on the widely used optimization method under static loads by converting dynamic load of the three roads to equivalent static loads. Results of the new design show that the strength and stiffness were increased by 24.3% and 42.9% respectively.



Author(s):  
M. G. Burke ◽  
M. N. Gungor ◽  
M. A. Burke

Intermetallic matrix composites are candidates for ultrahigh temperature service when light weight and high temperature strength and stiffness are required. Recent efforts to produce intermetallic matrix composites have focused on the titanium aluminide (TiAl) system with various ceramic reinforcements. In order to optimize the composition and processing of these composites it is necessary to evaluate the range of structures that can be produced in these materials and to identify the characteristics of the optimum structures. Normally, TiAl materials are difficult to process and, thus, examination of a suitable range of structures would not be feasible. However, plasma processing offers a novel method for producing composites from difficult to process component materials. By melting one or more of the component materials in a plasma and controlling deposition onto a cooled substrate, a range of structures can be produced and the method is highly suited to examining experimental composite systems. Moreover, because plasma processing involves rapid melting and very rapid cooling can be induced in the deposited composite, it is expected that processing method can avoid some of the problems, such as interfacial degradation, that are associated with the relatively long time, high temperature exposures that are induced by conventional processing methods.



Author(s):  
Christine M. Dannels ◽  
Christopher Viney

Processing polymers from the liquid crystalline state offers several advantages compared to processing from conventional fluids. These include: better axial strength and stiffness in fibers, better planar orientation in films, lower viscosity during processing, low solidification shrinkage of injection moldings (thermotropic processing), and low thermal expansion coefficients. However, the compressive strength of the solid is disappointing. Previous efforts to improve this property have focussed on synthesizing stiffer molecules. The effect of microstructural scale has been overlooked, even though its relevance to the mechanical and physical properties of more traditional materials is well established. By analogy with the behavior of metals and ceramics, one would expect a fine microstructure (i..e. a high density of orientational defects) to be desirable.Also, because much microstructural detail in liquid crystalline polymers occurs on a scale close to the wavelength of light, light is scattered on passing through these materials.



Author(s):  
Wendy Putnam ◽  
Christopher Viney

Liquid crystalline polymers (solutions or melts) can be spun into fibers and films that have a higher axial strength and stiffness than conventionally processed polymers. These superior properties are due to the spontaneous molecular extension and alignment that is characteristic of liquid crystalline phases. Much of the effort in processing conventional polymers goes into extending and aligning the chains, while, in liquid crystalline polymer processing, the primary microstructural rearrangement involves converting local molecular alignment into global molecular alignment. Unfortunately, the global alignment introduced by processing relaxes quickly upon cessation of shear, and the molecular orientation develops a periodic misalignment relative to the shear direction. The axial strength and stiffness are reduced by this relaxation.Clearly there is a need to solidify the liquid crystalline state (i.e. remove heat or solvent) before significant relaxation occurs. Several researchers have observed this relaxation, mainly in solutions of hydroxypropyl cellulose (HPC) because they are lyotropic under ambient conditions.





2020 ◽  
Author(s):  
Sawate Chuariyakul ◽  
Noppadol Iamtanasinchai ◽  
Victor Abadi


2003 ◽  
Vol 154 (12) ◽  
pp. 498-503 ◽  
Author(s):  
Ingo Burgert

Three investigations into the mechanical relevance of wood rays were combined for this article. The main objective was to show, that, apart from physiological functions, rays also significantly influence the radial strength and stiffness of wood. In the first approach twelve deciduous tree species with various proportions of fractions of rays were examined for their transverse tensile strength and stiffness. The second approach was based on the comparison of the radial mechanical properties of wood with a very high proportion of fraction of rays and beech wood with a normal volume. In these two investigations the mechanical relevance of rays could only be deduced indirectly. By isolating big rays of beech and carrying out tensile tests on the tissue, we found direct evidence for the mechanical relevance. The results are discussed with regard to their biomechanical relevance. The importance of a radial reinforcement for the wood is underlined. Moreover, the principle of multi-functionality in nature is emphasized in keeping with a possible transfer of biological design to technical solutions.



Sign in / Sign up

Export Citation Format

Share Document