scholarly journals Direct construction of a four-dimensional mesh model from a three-dimensional object with continuous rigid body movement

2014 ◽  
Vol 1 (2) ◽  
pp. 96-102 ◽  
Author(s):  
Ikuru Otomo ◽  
Masahiko Onosato ◽  
Fumiki Tanaka

Abstract In the field of design and manufacturing, there are many problems with managing dynamic states of three-dimensional (3D) objects. In order to solve these problems, the four-dimensional (4D) mesh model and its modeling system have been proposed. The 4D mesh model is defined as a 4D object model that is bounded by tetrahedral cells, and can represent spatio-temporal changes of a 3D object continuously. The 4D mesh model helps to solve dynamic problems of 3D models as geometric problems. However, the construction of the 4D mesh model is limited on the time-series 3D voxel data based method. This method is memory-hogging and requires much computing time. In this research, we propose a new method of constructing the 4D mesh model that derives from the 3D mesh model with continuous rigid body movement. This method is realized by making a swept shape of a 3D mesh model in the fourth dimension and its tetrahe-dralization. Here, the rigid body movement is a screwed movement, which is a combination of translational and rotational movement.

Algorithms ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 99
Author(s):  
Yang Zheng ◽  
Jieyu Zhao ◽  
Yu Chen ◽  
Chen Tang ◽  
Shushi Yu

With the widespread success of deep learning in the two-dimensional field, how to apply deep learning methods from two-dimensional to three-dimensional field has become a current research hotspot. Among them, the polygon mesh structure in the three-dimensional representation as a complex data structure provides an effective shape approximate representation for the three-dimensional object. Although the traditional method can extract the characteristics of the three-dimensional object through the graphical method, it cannot be applied to more complex objects. However, due to the complexity and irregularity of the mesh data, it is difficult to directly apply convolutional neural networks to 3D mesh data processing. Considering this problem, we propose a deep learning method based on a capsule network to effectively classify mesh data. We first design a polynomial convolution template. Through a sliding operation similar to a two-dimensional image convolution window, we directly sample on the grid surface, and use the window sampling surface as the minimum unit of calculation. Because a high-order polynomial can effectively represent a surface, we fit the approximate shape of the surface through the polynomial, use the polynomial parameter as the shape feature of the surface, and add the center point coordinates and normal vector of the surface as the pose feature of the surface. The feature is used as the feature vector of the surface. At the same time, to solve the problem of the introduction of a large number of pooling layers in traditional convolutional neural networks, the capsule network is introduced. For the problem of nonuniform size of the input grid model, the capsule network attitude parameter learning method is improved by sharing the weight of the attitude matrix. The amount of model parameters is reduced, and the training efficiency of the 3D mesh model is further improved. The experiment is compared with the traditional method and the latest two methods on the SHREC15 data set. Compared with the MeshNet and MeshCNN, the average recognition accuracy in the original test set is improved by 3.4% and 2.1%, and the average after fusion of features the accuracy reaches 93.8%. At the same time, under the premise of short training time, this method can also achieve considerable recognition results through experimental verification. The three-dimensional mesh classification method proposed in this paper combines the advantages of graphics and deep learning methods, and effectively improves the classification effect of 3D mesh model.


2021 ◽  
pp. 004051752110138
Author(s):  
Haisang Liu ◽  
Gaoming Jiang ◽  
Zhijia Dong

The purpose of this paper is to geometrically simulate warp-knitted medical tubular bandages with a computer-aided simulator. A flat mesh model is established according to unfolded fabric considering the knitting characteristics of double-needle bed warp-knitted tubular fabrics. Moreover, a 3D (three-dimensional) mesh model corresponding to the actual product shape is created. To better describe the spatial geometry of stitches, eight-point models are introduced, and stitches are generated with the flat mesh model. Founded on matrix operations, the stitch position in the 3D mesh model is determined through coordinate mapping. Various stitch paths are rendered in computer programming languages C# and JavaScript to conduct simulations. Warp-knitted medical tubular bandages with a large number of shapes are effectively modeled.


Author(s):  
Zhen Li

Application of 3D mesh model coding is first presented in this chapter. We then survey the typical existing algorithms in the area of compression of static and dynamic 3D meshes. In an introductory sub-section we introduce basic concepts of 3D mesh models, including data representations, model formats, data acquisitions and 3D display technologies. Furthermore, we introduce several typical 3D mesh formats and give an overview to coding principles of mesh compression algorithms in general, followed by describing the quantitative measures for 3D mesh compression. Then we describe some typical and state-of-the-art algorithms in 3D mesh compression. Compression and streaming of gigantic 3D models are specially introduced. At last, the MPEG4 3D mesh model coding standard is briefed. We conclude this chapter with a discussion providing an overall picture of developments in the mesh coding area and pointing out directions for future research.


Author(s):  
Mona M. Soliman ◽  
Aboul Ella Hassanien

This work proposes a watermarking approach by utilizing the use of Bio-Inspired techniques such as swarm intelligent in optimizing watermarking algorithms for 3D models. In this proposed work we present an approach of 3D mesh model watermarking by introducing a new robust 3D mesh watermarking authentication methods by ensuring a minimal surface distortion at the same time ensuring a high robustness of extracted watermark. In order to achieve these requirements this work proposes the use of Particle Swarm Optimization (PSO) as Bio-Inspired optimization techniques. The experiments were executed using different sets of 3D models. In all experimental results we consider two important factors: imperceptibility and robustness. The experimental results show that the proposed approach yields a watermarked object with good visual definition; at the same time, the embedded watermark was robust against a wide variety of common attacks.


2012 ◽  
Vol 22 (5) ◽  
pp. 744-759 ◽  
Author(s):  
Suk-Hwan Lee ◽  
Ki-Ryong Kwon
Keyword(s):  
3D Mesh ◽  

2004 ◽  
Vol 20 (8) ◽  
pp. 1241-1250
Author(s):  
Deok-Soo Kim ◽  
Youngsong Cho ◽  
Hyun Kim

Author(s):  
Ceyhun Koc ◽  
Ozgun Pinarer ◽  
Sultan Turhan

Author(s):  
Zhaocong Wu ◽  
Min Ni ◽  
Zhongwen Hu ◽  
Junjie Wang ◽  
Qingquan Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document