scholarly journals 3D Mesh Model Classification with a Capsule Network

Algorithms ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 99
Author(s):  
Yang Zheng ◽  
Jieyu Zhao ◽  
Yu Chen ◽  
Chen Tang ◽  
Shushi Yu

With the widespread success of deep learning in the two-dimensional field, how to apply deep learning methods from two-dimensional to three-dimensional field has become a current research hotspot. Among them, the polygon mesh structure in the three-dimensional representation as a complex data structure provides an effective shape approximate representation for the three-dimensional object. Although the traditional method can extract the characteristics of the three-dimensional object through the graphical method, it cannot be applied to more complex objects. However, due to the complexity and irregularity of the mesh data, it is difficult to directly apply convolutional neural networks to 3D mesh data processing. Considering this problem, we propose a deep learning method based on a capsule network to effectively classify mesh data. We first design a polynomial convolution template. Through a sliding operation similar to a two-dimensional image convolution window, we directly sample on the grid surface, and use the window sampling surface as the minimum unit of calculation. Because a high-order polynomial can effectively represent a surface, we fit the approximate shape of the surface through the polynomial, use the polynomial parameter as the shape feature of the surface, and add the center point coordinates and normal vector of the surface as the pose feature of the surface. The feature is used as the feature vector of the surface. At the same time, to solve the problem of the introduction of a large number of pooling layers in traditional convolutional neural networks, the capsule network is introduced. For the problem of nonuniform size of the input grid model, the capsule network attitude parameter learning method is improved by sharing the weight of the attitude matrix. The amount of model parameters is reduced, and the training efficiency of the 3D mesh model is further improved. The experiment is compared with the traditional method and the latest two methods on the SHREC15 data set. Compared with the MeshNet and MeshCNN, the average recognition accuracy in the original test set is improved by 3.4% and 2.1%, and the average after fusion of features the accuracy reaches 93.8%. At the same time, under the premise of short training time, this method can also achieve considerable recognition results through experimental verification. The three-dimensional mesh classification method proposed in this paper combines the advantages of graphics and deep learning methods, and effectively improves the classification effect of 3D mesh model.

2014 ◽  
Vol 1 (2) ◽  
pp. 96-102 ◽  
Author(s):  
Ikuru Otomo ◽  
Masahiko Onosato ◽  
Fumiki Tanaka

Abstract In the field of design and manufacturing, there are many problems with managing dynamic states of three-dimensional (3D) objects. In order to solve these problems, the four-dimensional (4D) mesh model and its modeling system have been proposed. The 4D mesh model is defined as a 4D object model that is bounded by tetrahedral cells, and can represent spatio-temporal changes of a 3D object continuously. The 4D mesh model helps to solve dynamic problems of 3D models as geometric problems. However, the construction of the 4D mesh model is limited on the time-series 3D voxel data based method. This method is memory-hogging and requires much computing time. In this research, we propose a new method of constructing the 4D mesh model that derives from the 3D mesh model with continuous rigid body movement. This method is realized by making a swept shape of a 3D mesh model in the fourth dimension and its tetrahe-dralization. Here, the rigid body movement is a screwed movement, which is a combination of translational and rotational movement.


2021 ◽  
pp. 004051752110138
Author(s):  
Haisang Liu ◽  
Gaoming Jiang ◽  
Zhijia Dong

The purpose of this paper is to geometrically simulate warp-knitted medical tubular bandages with a computer-aided simulator. A flat mesh model is established according to unfolded fabric considering the knitting characteristics of double-needle bed warp-knitted tubular fabrics. Moreover, a 3D (three-dimensional) mesh model corresponding to the actual product shape is created. To better describe the spatial geometry of stitches, eight-point models are introduced, and stitches are generated with the flat mesh model. Founded on matrix operations, the stitch position in the 3D mesh model is determined through coordinate mapping. Various stitch paths are rendered in computer programming languages C# and JavaScript to conduct simulations. Warp-knitted medical tubular bandages with a large number of shapes are effectively modeled.


2021 ◽  
Vol 229 ◽  
pp. 01003
Author(s):  
Omaima El Alaoui-Elfels ◽  
Taoufiq Gadi

Convolutional Neural Networks are a very powerful Deep Learning structure used in image processing, object classification and segmentation. They are very robust in extracting features from data and largely used in several domains. Nonetheless, they require a large number of training datasets and relations between features get lost in the Max-pooling step, which can lead to a wrong classification. Capsule Networks(CapsNets) were introduced to overcome these limitations by extracting features and their pose using capsules instead of neurons. This technique shows an impressive performance in one-dimensional, two-dimensional and three-dimensional datasets as well as in sparse datasets. In this paper, we present an initial understanding of CapsNets, their concept, structure and learning algorithm. We introduce the progress made by CapsNets from their introduction in 2011 until 2020. We compare different CapsNets series architectures to demonstrate strengths and challenges. Finally, we quote different implementations of Capsule Networks and show their robustness in a variety of domains. This survey provides the state-of-theartof Capsule Networks and allows other researchers to get a clear view of this new field. Besides, we discuss the open issues and the promising directions of future research, which may lead to a new generation of CapsNets.


2012 ◽  
Vol 22 (5) ◽  
pp. 744-759 ◽  
Author(s):  
Suk-Hwan Lee ◽  
Ki-Ryong Kwon
Keyword(s):  
3D Mesh ◽  

2004 ◽  
Vol 20 (8) ◽  
pp. 1241-1250
Author(s):  
Deok-Soo Kim ◽  
Youngsong Cho ◽  
Hyun Kim

2021 ◽  
Vol 13 (7) ◽  
pp. 1236
Author(s):  
Yuanjun Shu ◽  
Wei Li ◽  
Menglong Yang ◽  
Peng Cheng ◽  
Songchen Han

Convolutional neural networks (CNNs) have been widely used in change detection of synthetic aperture radar (SAR) images and have been proven to have better precision than traditional methods. A two-stage patch-based deep learning method with a label updating strategy is proposed in this paper. The initial label and mask are generated at the pre-classification stage. Then a two-stage updating strategy is applied to gradually recover changed areas. At the first stage, diversity of training data is gradually restored. The output of the designed CNN network is further processed to generate a new label and a new mask for the following learning iteration. As the diversity of data is ensured after the first stage, pixels within uncertain areas can be easily classified at the second stage. Experiment results on several representative datasets show the effectiveness of our proposed method compared with several existing competitive methods.


Sign in / Sign up

Export Citation Format

Share Document