scholarly journals Phytodiversity of Limnos (North Aegean, Greece)—an update and evaluation

2021 ◽  
Vol 31 ◽  
Keyword(s):  
2010 ◽  
Vol 79 (1) ◽  
pp. 77-93 ◽  
Author(s):  
Denise Demetriou
Keyword(s):  

Author(s):  
Ilias Lazos ◽  
Sotirios Sboras ◽  
Christos Pikridas ◽  
Spyros Pavlides ◽  
Alexandros Chatzipetros

2020 ◽  
Vol 12 (24) ◽  
pp. 10420
Author(s):  
Ioannis Chatziioannou ◽  
Efthimios Bakogiannis ◽  
Charalampos Kyriakidis ◽  
Luis Alvarez-Icaza

One of the biggest challenges of our time is climate change. Every day, at different places of the world, the planet sends alarming messages about the enormous transformations it is experiencing due to human-based activities. The latter are responsible for changing weather patterns that threaten food production, energy production and energy consumption, the desertification of land, the displacement of people and animals because of food and water shortages due to the reductions in rainfall, natural disasters and rising sea levels. The effects of climate change affect us all, and if drastic measures are not considered in a timely manner, it will be more difficult and costly to adapt to the aforementioned effects in the future. Considering this context, the aim of this work is to implement a prospective study/structural analysis to the identified sectors of a regional plan of adaptation to climate change so as to promote the resilience of the region against the negative phenomena generated by the climate crisis. This was achieved in two steps: first, we identified the relationships between the strategic sectors of the plan and organized them in order of importance. Second, we assessed the effectiveness of several public policies oriented towards a city’s resilience according to their impact upon the strategic sectors of the plan and the co-benefits generated by their implementation for society. The results highlight that the most essential sectors for the mitigation of climate change are flood risk management, built environment, forest ecosystem management, human health, tourism and rise in sea level. As a consequence, the most important measures for the resilience of the North Aegean Region against climate change are the ones related to the preparation of strategic master plans for flood protection projects.


2020 ◽  
Vol 35 (2) ◽  
pp. 57-63
Author(s):  
Hakan Ayyıldız ◽  
Aytaç Altın ◽  
Bayram Kızılkaya

2002 ◽  
Vol 3 (1) ◽  
pp. 5 ◽  
Author(s):  
V. ZERVAKIS ◽  
D. GEORGOPOULOS

The combination of two research projects offered us the opportunity to perform a comprehensive study of the seasonal evolution of the hydrological structure and the circulation of the North Aegean Sea, at the northern extremes of the eastern Mediterranean. The combination of brackish water inflow from the Dardanelles and the sea-bottom relief dictate the significant differences between the North and South Aegean water columns. The relatively warm and highly saline South Aegean waters enter the North Aegean through the dominant cyclonic circulation of the basin. In the North Aegean, three layers of distinct water masses of very different properties are observed: The 20-50 m thick surface layer is occupied mainly by Black Sea Water, modified on its way through the Bosphorus, the Sea of Marmara and the Dardanelles. Below the surface layer there is warm and highly saline water originating in the South Aegean and the Levantine, extending down to 350-400 m depth. Below this layer, the deeper-than-400 m basins of the North Aegean contain locally formed, very dense water with different θ /S characteristics at each subbasin. The circulation is characterised by a series of permanent, semi-permanent and transient mesoscale features, overlaid on the general slow cyclonic circulation of the Aegean. The mesoscale activity, while not necessarily important in enhancing isopycnal mixing in the region, in combination with the very high stratification of the upper layers, however, increases the residence time of the water of the upper layers in the general area of the North Aegean. As a result, water having out-flowed from the Black Sea in the winter, forms a separate distinct layer in the region in spring (lying between “younger” BSW and the Levantine origin water), and is still traceable in the water column in late summer.


Sign in / Sign up

Export Citation Format

Share Document