scholarly journals Multicriteria optimization based on neuro-fuzzy approximation of decision maker▓s utility function

Author(s):  
Karpenko ◽  
Moor ◽  
Mukhlisullina
2017 ◽  
Vol 21 (6) ◽  
pp. 2967-2986 ◽  
Author(s):  
Simon Matte ◽  
Marie-Amélie Boucher ◽  
Vincent Boucher ◽  
Thomas-Charles Fortier Filion

Abstract. A large effort has been made over the past 10 years to promote the operational use of probabilistic or ensemble streamflow forecasts. Numerous studies have shown that ensemble forecasts are of higher quality than deterministic ones. Many studies also conclude that decisions based on ensemble rather than deterministic forecasts lead to better decisions in the context of flood mitigation. Hence, it is believed that ensemble forecasts possess a greater economic and social value for both decision makers and the general population. However, the vast majority of, if not all, existing hydro-economic studies rely on a cost–loss ratio framework that assumes a risk-neutral decision maker. To overcome this important flaw, this study borrows from economics and evaluates the economic value of early warning flood systems using the well-known Constant Absolute Risk Aversion (CARA) utility function, which explicitly accounts for the level of risk aversion of the decision maker. This new framework allows for the full exploitation of the information related to a forecasts' uncertainty, making it especially suited for the economic assessment of ensemble or probabilistic forecasts. Rather than comparing deterministic and ensemble forecasts, this study focuses on comparing different types of ensemble forecasts. There are multiple ways of assessing and representing forecast uncertainty. Consequently, there exist many different means of building an ensemble forecasting system for future streamflow. One such possibility is to dress deterministic forecasts using the statistics of past error forecasts. Such dressing methods are popular among operational agencies because of their simplicity and intuitiveness. Another approach is the use of ensemble meteorological forecasts for precipitation and temperature, which are then provided as inputs to one or many hydrological model(s). In this study, three concurrent ensemble streamflow forecasting systems are compared: simple statistically dressed deterministic forecasts, forecasts based on meteorological ensembles, and a variant of the latter that also includes an estimation of state variable uncertainty. This comparison takes place for the Montmorency River, a small flood-prone watershed in southern central Quebec, Canada. The assessment of forecasts is performed for lead times of 1 to 5 days, both in terms of forecasts' quality (relative to the corresponding record of observations) and in terms of economic value, using the new proposed framework based on the CARA utility function. It is found that the economic value of a forecast for a risk-averse decision maker is closely linked to the forecast reliability in predicting the upper tail of the streamflow distribution. Hence, post-processing forecasts to avoid over-forecasting could help improve both the quality and the value of forecasts.


Author(s):  
Ibrahim Almojel ◽  
Jim Matheson ◽  
Pelin Canbolat

This paper focuses on the study of information in fleeting opportunities. An application example is the evaluation of business proposals by venture capitalists. The authors formulate the generic problem as a dynamic program where the decision maker can either accept a given deal directly, reject it directly, or seek further information on its potential and then decide whether to accept it or not. Results show well behaved characteristics of the optimal policy, deal flow value, and the value of information over time and capacity. It is presumed that the risk preference of the decision maker follows a linear or an exponential utility function. This approach is illustrated through several examples.


2016 ◽  
Vol 820 ◽  
pp. 96-101 ◽  
Author(s):  
Lucia Paulovičová

Earthwork processes are the most costly and time consuming component of construction these days and they are characterized by a powerful heavy mechanization which participate on the earthwork process. Current pressure for minimize the cost and maximize the productivity highlights the need to optimize earthworks. In this paper, the optimization process in the area of earthwork processes is described. The selection of the right types of machines for earthwork and its implements has become very difficult these days because of availability of variety of machines models and therefore a multicriteria method is presented to tackle the problem. This paper describes methodology for optimizing the earthwork process according to the selected optimal criteria. The methodology is focused on the proposal phase of optimization where the decision maker has to make a decision and choose the right type of excavators. To overcome the problem of comparing the chosen machines a mathematical modeling approach leading to multicriteria optimization was adopted to make the step wise decision. The methodology gives an mathematical models by which we can solve this problem.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Shirin Mohammadi ◽  
S. Morteza Mirdehghan ◽  
Gholamreza Jahanshahloo

Data envelopment analysis (DEA) evaluates the efficiency of the transformation of a decision-making unit’s (DMU’s) inputs into its outputs. Finding the benchmarks of a DMU is one of the important purposes of DEA. The benchmarks of a DMU in DEA are obtained by solving some linear programming models. Currently, the obtained benchmarks are just found by using the information of the data of inputs and outputs without considering the decision-maker’s preferences. If the preferences of the decision-maker are available, it is very important to obtain the most preferred DMU as a benchmark of the under-assessment DMU. In this regard, we present an algorithm to find the most preferred DMU based on the utility function of decision-maker’s preferences by exploring some properties on that. The proposed method is constructed based on the projection of the gradient of the utility function on the production possibility set’s frontier.


Sign in / Sign up

Export Citation Format

Share Document