scholarly journals Design of Driving Motor for Small Electric Vehicle Using Low Voltage Battery

2022 ◽  
Vol 30 (1) ◽  
pp. 83-89
Author(s):  
Daesung Jung
Keyword(s):  
Electricity ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 91-109
Author(s):  
Julian Wruk ◽  
Kevin Cibis ◽  
Matthias Resch ◽  
Hanne Sæle ◽  
Markus Zdrallek

This article outlines methods to facilitate the assessment of the impact of electric vehicle charging on distribution networks at planning stage and applies them to a case study. As network planning is becoming a more complex task, an approach to automated network planning that yields the optimal reinforcement strategy is outlined. Different reinforcement measures are weighted against each other in terms of technical feasibility and costs by applying a genetic algorithm. Traditional reinforcements as well as novel solutions including voltage regulation are considered. To account for electric vehicle charging, a method to determine the uptake in equivalent load is presented. For this, measured data of households and statistical data of electric vehicles are combined in a stochastic analysis to determine the simultaneity factors of household load including electric vehicle charging. The developed methods are applied to an exemplary case study with Norwegian low-voltage networks. Different penetration rates of electric vehicles on a development path until 2040 are considered.


Author(s):  
Sebastian Helm ◽  
Ines Hauer ◽  
Martin Wolter ◽  
Christoph Wenge ◽  
Stephan Balischewski ◽  
...  

Author(s):  
Yue Wang ◽  
David Infield ◽  
Simon Gill

This paper assumes a smart grid framework where the driving patterns for electric vehicles are known, time variations in electricity prices are communicated to householders, and data on voltage variation throughout the distribution system are available. Based on this information, an aggregator with access to this data can be employed to minimise electric vehicles charging costs to the owner whilst maintaining acceptable distribution system voltages. In this study, electric vehicle charging is assumed to take place only in the home. A single-phase Low Voltage (LV) distribution network is investigated where the local electric vehicles penetration level is assumed to be 100%. Electric vehicle use patterns have been extracted from the UK Time of Use Survey data with a 10-min resolution and the domestic base load is generated from an existing public domain model. Apart from the so-called real time price signal, which is derived from the electricity system wholesale price, the cost of battery degradation is also considered in the optimal scheduling of electric vehicles charging. A simple and effective heuristic method is proposed to minimise the electric vehicles’ charging cost whilst satisfying the requirement of state of charge for the electric vehicles’ battery. A simulation in OpenDSS over a period of 24 h has been implemented, taking care of the network constraints for voltage level at the customer connection points. The optimisation results are compared with those obtained using dynamic optimal power flow.


2021 ◽  
Author(s):  
Guiying Ren ◽  
Mingli Zhao ◽  
Zilong Wang ◽  
Chong Wang ◽  
Jiajia Guo ◽  
...  

Smart Cities ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 17-40
Author(s):  
Daniel-Leon Schultis

The increasing use of distributed generation and electric vehicle charging stations provokes violations of the operational limits in low voltage grids. The mitigation of voltage limit violations is addressed by Volt/var control strategies, while thermal overload is avoided by using congestion management. Congestions in low voltage grids can be managed by coordinating the active power contributions of the connected elements. As a prerequisite, the system state must be carefully observed. This study presents and investigates a method for the sparse measurement-based detection of feeder congestions that bypasses the major hurdles of distribution system state estimation. Furthermore, the developed method is used to enable congestion management by the centralized coordination of the distributed electric vehicle charging stations. Different algorithms are presented and tested by conducting load flow simulations on a real urban low voltage grid for several scenarios. Results show that the proposed method reliably detects all congestions, but in some cases, overloads are detected when none are present. A minimal detection accuracy of 73.07% is found across all simulations. The coordination algorithms react to detected congestions by reducing the power consumption of the corresponding charging stations. When properly designed, this strategy avoids congestions reliably but conservatively. Unnecessary reduction of the charging power may occur. In total, the presented solution offers an acceptable performance while requiring low implementation effort; no complex adaptations are required after grid reinforcement and expansion.


Sign in / Sign up

Export Citation Format

Share Document