Comparative Study on Energy Performance of Common Commercial Building Wall Systems

Author(s):  
Yiang Xiao ◽  
Ali M. Memari
2021 ◽  
Vol 39 ◽  
pp. 102188
Author(s):  
Yu Zhao ◽  
Nan Li ◽  
Chenyang Tao ◽  
Qiong Chen ◽  
Mengqi Jiang

2019 ◽  
Vol 103 ◽  
pp. 02001 ◽  
Author(s):  
Maatouk Khoukhi ◽  
Ahmed Hassan ◽  
Shaimaa Abdelbaqi

This paper illustrates the impact of embedding an insulation layer of variable thermal conductivity in a typical building wall on the cooling effect and energy performance. The evaluation was performed by applying a conjugate heat transfer model, which was tested in extremely hot conditions of Al Ain (UAE). The thermal performance of a building incorporating insulation layers of variable thermal conductivity (k-value) was compared to a non-variable thermal conductivity system by quantifying the additional heat transferred due to the k-relationship with time. The results show that, when the k-value is a function of operating temperature, its effects on the temperature profile through the wall assembly during daytime is significant compared with that obtained when a constant k-value for the polystyrene (EPS) insulation is adopted. A similar trend in the evolution of temperatures during the day and across the wall section was observed when EPS material with different moisture content was evaluated. For the polyurethane insulation, the inner surface temperature reached 44 °C when constant k-value was adopted, increasing to 48.5 °C when the k-value was allowed to vary under the same ambient conditions.


2021 ◽  
Author(s):  
◽  
Chi-Yao Hsu

<p>The focus of this research is the concept of the 'Performance Sketch' tool. This is to use detailed simulation software to calculate (plausible) energy performance of designs quickly. Analogous to the Architectural Sketch the Performance Sketch uses high quality tools (detailed simulation) to create an accurate, but simple representation of the essential properties of a building, as opposed to a detailed representation. The aim of this research is to assess the consistency between the predictions produced by performance sketch design tools and the calculations produced by detailed design tools. The Lawrence Berkeley National Laboratory’s (LBNL) computer software COMFEN (COMmercial FENestration) is a performance sketch tool. It makes the power of the complex detailed design simulation package EnergyPlus available in the very early stages of the design process. It uses a single zone, single external façade EnergyPlus model to explore the costs and benefits of alternate façade designs. The hypothesis tested is that the COMFEN (single-zone) energy performance calculation method is plausible for early design analyses. It evaluates the performance sketch approach from three different points of view: first, COMFEN was introduced to various practitioners in the building industry to gather use-case feedback on the performance sketch approach. A list of specifications for performance sketch design tools was developed based on these use-cases. Second, it examines whether the optimum façade identified by COMFEN creates the optimum performance complex building when this optimum façade is incorporated into detailed building models. Finally, refinements of the nature of the performance sketch based on this use-case feedback were tested in EnergyPlus. The thesis concludes by drawing together these three threads into an outline of a practitioner-based definition of an ideal performance sketch which has been tested in practical application.</p>


Sign in / Sign up

Export Citation Format

Share Document