scholarly journals CORRELATION BETWEEN MECHANICAL PROPERTIES OF SELECTED 7XXX SERIES ALUMINUM ALLOYS OBTAINED BY SEMI-CONTINUOUS CASTING

2016 ◽  
Vol 42 (1) ◽  
pp. 69
Author(s):  
Zofia Kwak ◽  
Aldona Garbacz-Klempka ◽  
Małgorzata Perek-Nowak ◽  
Łukasz Szymański
2021 ◽  
Author(s):  
Aleksandr Innokentyevich Bezrukikh ◽  
Vladimir Nikolaevich Baranov ◽  
Igor Lazarevich Konstantinov ◽  
Pavel Olegovich Yuryev ◽  
Denis Sergeevich Voroshilov ◽  
...  

Abstract A physical model of a semi-continuous casting unit (SCCU) has been manufactured and tested, designed to develop a technology for casting flat and cylindrical ingots from experimental aluminum alloys for subsequent metal forming. The SCCU includes two induction melting furnaces with a tilting mechanism, a rotary mixer, a metal path system, a vertical casting machine, a jib crane, water supply, power supply, monitoring and control systems. SCCU testing was carried out on six heats of alloy 1580 of the Al-Mg system with the addition of scandium. In the first three ingots the scandium content was 0.05% (wt.). In the second series of three heats ingots with 0.075% (wt.) scandium were cast. The ingots had a high surface quality, did not have casting defects, and there were no inclusions of primary intermetallic compounds Al3(Sc, Zr) in the structure of the ingots. The bottom and runner parts of the ingots were cut off, all faces were milled and subjected to homogenization annealing in a two-stage mode: the first heating at 350 °C, 3 h, the second heating for 1 h to 425 °C, 4 h. Then the billets were hot rolled from 40 to 5 mm, annealed at 380 °C, 1 h, rolled at room temperature to a thickness of 1 mm and annealed at 350 °C, 3 h. After that, tensile mechanical properties were tested. The results of modeling ingot casting were tested in industrial conditions when casting a large ingot with a cross section of 2100×500 mm. A template was cut from the ingot with the dimensions of a billet for rolling, as that obtained from an experimental ingot cast at the SCCU. The billet was subjected to hot and cold rolling according to the conditions used for rolling the experimental ingot. At the same time the modes of heat treatment of sheet semi-finished products were also repeated. The mechanical properties of sheets of alloy 1580 rolled from experimental and industrial ingots practically did not differ. This proves the reliability of casting modes for ingots obtained at the SCCU and tested for casting industrial ingots.


2011 ◽  
Vol 295-297 ◽  
pp. 751-759 ◽  
Author(s):  
Hua Shen ◽  
Wei Dong Yang ◽  
He Liang ◽  
Guang Chun Yao

The presence of Fe and harmful effects on mechanical properties of pure aluminum and aluminum alloys are introduced. Several purification methods are reviewed, but all of them are of definite limitations. It is effective that precipitation method, filtration method and centrifugal division method are integrated.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3675
Author(s):  
A. Muthuchamy ◽  
Muthe Srikanth ◽  
Dinesh K. Agrawal ◽  
A. Raja Annamalai

In this research, we intended to examine the effect of heating mode on the densification, microstructure, mechanical properties, and corrosion resistance of sintered aluminum alloys. The compacts were sintered in conventional (radiation-heated) and microwave (2.45 GHz, multimode) sintering furnaces followed by aging. Detailed analysis of the final sintered aluminum alloys was done using optical and scanning electron microscopes. The observations revealed that the microwave sintered sample has a relatively finer microstructure compared to its conventionally sintered counterparts. The experimental results also show that microwave sintered alloy has the best mechanical properties over conventionally sintered compacts. Similarly, the microwave sintered samples showed better corrosion resistance than conventionally sintered ones.


2021 ◽  
Vol 146 ◽  
pp. 106165
Author(s):  
Muztahid Muhammad ◽  
P.D. Nezhadfar ◽  
Spencer Thompson ◽  
Ankit Saharan ◽  
Nam Phan ◽  
...  

2013 ◽  
Vol 404 ◽  
pp. 3-9 ◽  
Author(s):  
Nihat Tosun ◽  
Ihsan Dagtekin ◽  
Latif Ozler ◽  
Ahmet Deniz

Abrasive waterjet machining is one of the non-traditional methods of the recent years which found itself a wide area of application in the industry for machining of different materials. In this paper, the surface roughness of 6061-T6 and 7075-T6 aluminum alloys are being cut with abrasive waterjet is examined experimentally. The experiments were conducted with different waterjet pressures and traverse speeds. It has been found that the surface roughness obtained by cutting material with high mechanical properties is better than that of obtained by cutting material with inferior mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document